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Preface

Just a few years ago, there were no legions of deep learning scientists developing intelligent prod-
ucts and services at major companies and startups. When we entered the field, machine learning
did not command headlines in daily newspapers. Our parents had no idea whatmachine learning
was, let alone why we might prefer it to a career in medicine or law. Machine learning was a blue
skies academic discipline whose industrial significance was limited to a narrow set of real-world
applications, including speech recognition and computer vision. Moreover, many of these appli-
cations required so much domain knowledge that they were often regarded as entirely separate
areas for which machine learning was one small component. At that time, neural networks—the
predecessors of the deep learningmethods that we focus on in this book—were generally regarded
as outmoded.

In just the past five years, deep learning has taken the world by surprise, driving rapid progress in
such diverse fields as diverse as computer vision, natural language processing, automatic speech
recognition, reinforcement learning, biomedical informatics, and has even catalyzed develop-
ments in theoretical machine learning and statistics. With these advances in hand, we can now
build cars that drive themselves with more autonomy than ever before (and less autonomy than
some companies might have you believe), smart reply systems that automatically draft the most
mundane emails, helping people dig out fromoppressively large inboxes, and software agents that
dominate the world s̓ best humans at board games like Go, a feat once thought to be decades away.
Already, these tools exert ever-wider impacts on industry and society, changing the way movies
aremade, diseases are diagnosed, and playing a growing role in basic sciences—fromastrophysics
to biology.

About This Book

This book represents our attempt to make deep learning approachable, teaching you the concepts,
the context, and the code.

OneMedium Combining Code, Math, and HTML

For any computing technology to reach its full impact, it must be well-understood, well-
documented, and supported by mature, well-maintained tools. The key ideas should be clearly
distilled, minimizing the onboarding time needing to bring new practitioners up to date. Mature
libraries should automate common tasks, and exemplar code shouldmake it easy for practitioners
to modify, apply, and extend common applications to suit their needs. Take dynamic web appli-
cations as an example. Despite a large number of companies, like Amazon, developing successful
database-driven web applications in the 1990s, the potential of this technology to aid creative en-
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trepreneurs has been realized to a far greater degree in the past ten years, owing in part to the
development of powerful, well-documented frameworks.

Testing the potential of deep learning presents unique challenges because any single application
brings together various disciplines. Applying deep learning requires simultaneously understand-
ing (i) the motivations for casting a problem in a particular way; (ii) the mathematical form of a
given model; (iii) the optimization algorithms for fitting the models to data; (iv) the basic statisti-
cal principles and intuitions that help us to extract generalizable insights from data; and (v) the
engineering required to train models efficiently, navigating the pitfalls of numerical computing
and getting themost out of available hardware. Teaching both the critical thinking skills required
to formulate problems, themathematics to solve them, and the software tools to implement those
solutions all in one place presents formidable challenges. Our goal in this book is to present a
unified resource to bring would-be practitioners up to speed.

When we started this book project, there were no resources that simultaneously (i) were up to
date; (ii) covered the full breadth of modern machine learning with substantial technical depth;
and (iii) interleaved exposition of the quality one expects from an engaging textbook with the
clean runnable code that one expects to find in hands-on tutorials. We found plenty of code exam-
ples for how to use a given deep learning framework (e.g., how to do basic numerical computing
with matrices in TensorFlow) or for implementing particular techniques (e.g., code snippets for
LeNet, AlexNet, ResNets, etc) scattered across various blog posts and GitHub repositories. How-
ever, these examples typically focused on how to implement a given approach, but left out the
discussion ofwhy certain algorithmic decisions aremade. While some interactive resources have
poppedup sporadically to address a particular topic, e.g., the engaging blog posts published on the
website Distill3, or personal blogs, they only covered selected topics in deep learning, and often
lacked associated code. On the other hand, while several deep learning textbooks have emerged—
e.g., (Goodfellow et al., 2016), which offers a comprehensive survey of the concepts behind deep
learning—these resources do not marry the descriptions to realizations of the concepts in code,
sometimes leaving readers clueless as to how to implement them. Moreover, too many resources
are hidden behind the paywalls of commercial course providers.

We set out to create a resource that could (i) be freely available for everyone; (ii) offer sufficient
technical depth to provide a starting point on the path to actually becoming an applied machine
learning scientist; (iii) include runnable code, showing readers how to solve problems in practice;
(iv) allow for rapid updates, both by us and also by the community at large; and (v) be comple-
mented by a forum4 for interactive discussion of technical details and to answer questions.

These goals were often in conflict. Equations, theorems, and citations are best managed and laid
out in LaTeX. Code is best described in Python. And webpages are native in HTML and JavaScript.
Furthermore, we want the content to be accessible both as executable code, as a physical book, as
a downloadable PDF, and on the Internet as a website. At present there exist no tools and nowork-
flowperfectly suited to these demands, sowe had to assemble our own. We describe our approach
in detail in Section 19.6. We settled onGitHub to share the source and to facilitate community con-
tributions, Jupyter notebooks for mixing code, equations and text, Sphinx as a rendering engine
to generate multiple outputs, and Discourse for the forum. While our system is not yet perfect,
these choices provide a good compromise among the competing concerns. We believe that this
might be the first book published using such an integrated workflow.

3 http://distill.pub
4 http://discuss.d2l.ai
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Learning by Doing

Many textbooks present concepts in succession, covering each in exhaustive detail. For example,
Chris Bishops̓ excellent textbook (Bishop, 2006), teaches each topic so thoroughly that getting to
the chapter on linear regression requires a non-trivial amount of work. While experts love this
book precisely for its thoroughness, for true beginners, this property limits its usefulness as an
introductory text.

In this book, wewill teachmost concepts just in time. In otherwords, youwill learn concepts at the
very moment that they are needed to accomplish some practical end. While we take some time at
the outset to teach fundamental preliminaries, like linear algebra and probability, we want you to
taste the satisfaction of training your first model before worrying about more esoteric probability
distributions.

Aside from a few preliminary notebooks that provide a crash course in the basic mathematical
background, each subsequent chapter introduces both a reasonable number of new concepts and
provides single self-contained working examples—using real datasets. This presents an organi-
zational challenge. Some models might logically be grouped together in a single notebook. And
some ideas might be best taught by executing several models in succession. On the other hand,
there is a big advantage to adhering to a policy of one working example, one notebook: This makes
it as easy as possible for you to start your own research projects by leveraging our code. Just copy
a notebook and start modifying it.

We will interleave the runnable code with background material as needed. In general, we will
often err on the side of making tools available before explaining them fully (and we will follow up
by explaining the background later). For instance, we might use stochastic gradient descent before
fully explaining why it is useful or why it works. This helps to give practitioners the necessary
ammunition to solve problems quickly, at the expense of requiring the reader to trust us with
some curatorial decisions.

This book will teach deep learning concepts from scratch. Sometimes, we want to delve into fine
details about the models that would typically be hidden from the user by deep learning frame-
worksʼ advanced abstractions. This comes up especially in the basic tutorials, where we want you
to understand everything that happens in a given layer or optimizer. In these cases, we will often
present two versions of the example: one where we implement everything from scratch, relying
only on NumPy-like functionality and automatic differentiation, and another, more practical ex-
ample, wherewewrite succinct code using the high-level APIs of deep learning frameworks. Once
we have taught you how some componentworks, we can just use the high-level APIs in subsequent
tutorials.
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Content and Structure

The book can be roughly divided into three parts, focusing on preliminaries, deep learning tech-
niques, and advanced topics focused on real systems and applications (Fig. 1).

Fig. 1: Book structure

• Thefirst part covers basics andpreliminaries. Chapter 1 offers an introduction to deep learn-
ing. Then, in Chapter 2, we quickly bring you up to speed on the prerequisites required for
hands-on deep learning, such as how to store andmanipulate data, and how to apply various
numerical operations based on basic concepts from linear algebra, calculus, and probabil-
ity. Chapter 3 and Chapter 4 cover themost basic concepts and techniques in deep learning,
including regression and classification; linearmodels andmultilayer perceptrons; and over-
fitting and regularization.

• The next five chapters focus on modern deep learning techniques. Chapter 5 describes the
key computational components of deep learning systems and lays the groundwork for our
subsequent implementations of more complex models. Next, Chapter 6 and Chapter 7, in-
troduce convolutional neural networks (CNNs), powerful tools that form the backbone of
most modern computer vision systems. Similarly, Chapter 8 and Chapter 9 introduce re-
current neural networks (RNNs), models that exploit sequential (e.g., temporal) structure
in data and are commonly used for natural language processing and time series prediction.
In Chapter 10, we introduce a relatively new class of models based on so-called attention
mechanisms that has displaced RNNs as the dominant architecture for most natural lan-
guage processing tasks. These sections will bring you up to speed on the most powerful and
general tools that are widely used by deep learning practitioners.

• Part three discusses scalability, efficiency, and applications. First, in Chapter 11, we dis-
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cuss several common optimization algorithms used to train deep learningmodels. The next
chapter, Chapter 12, examines several key factors that influence the computational perfor-
mance of your deep learning code. In Chapter 13, we illustrate major applications of deep
learning in computer vision. In Chapter 14 and Chapter 15, we show how to pretrain lan-
guage representation models and apply them to natural language processing tasks.

Code

Most sections of this book feature executable code. We believe that some intuitions are best de-
veloped via trial and error, tweaking the code in small ways and observing the results. Ideally, an
elegant mathematical theory might tell us precisely how to tweak our code to achieve a desired
result. However, today deep learning practitioners today must often tread where no cogent the-
ory can provide firm guidance. Despite our best attempts, formal explanations for the efficacy of
various techniques are still lacking, both because the mathematics to characterize these models
can be so difficult and also because serious inquiry on these topics has only just recently kicked
into high gear. We are hopeful that as the theory of deep learning progresses, future editions of
this book can provide insights that eclipse those presently available.

To avoid unnecessary repetition, we encapsulate some of our most frequently imported and
referred-to functions and classes in the d2l package. To indicate a block of code, such as a func-
tion, class, or collection of import statements, that will be subsequently accessed via the d2l pack-
age, we will mark it with #@save. We offer a detailed overview of these functions and classes in
Section 19.7. The d2l package is lightweight and only requires the following dependencies:

#@save
import collections
import hashlib
import math
import os
import random
import re
import shutil
import sys
import tarfile
import time
import zipfile
from collections import defaultdict
import pandas as pd
import requests
from IPython import display
from matplotlib import pyplot as plt

d2l = sys.modules[__name__]

Most of the code in this book is based on Apache MXNet, an open-source framework for deep
learning that is the preferred choice of AWS (Amazon Web Services), as well as many colleges
and companies. All of the code in this book has passed tests under the newest MXNet version.
However, due to the rapid development of deep learning, some code in the print edition may not
work properly in future versions ofMXNet. We plan to keep the online version up-to-date. In case
you encounter any problems, please consult Installation (page 9) to update your code and runtime
environment.

Here is how we import modules fromMXNet.
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#@save
from mxnet import autograd, context, gluon, image, init, np, npx
from mxnet.gluon import nn, rnn

Target Audience

This book is for students (undergraduate or graduate), engineers, and researchers, who seek a
solid grasp of the practical techniques of deep learning. Because we explain every concept from
scratch, no previous background in deep learning or machine learning is required. Fully explain-
ing themethods of deep learning requires somemathematics and programming, but we will only
assume that you come in with some basics, includingmodest amounts of linear algebra, calculus,
probability, and Python programming. Just in case you for get the basics, the Appendix provides
a refresher on most of the mathematics you will find in this book. Most of the time, we will pri-
oritize intuition and ideas over mathematical rigor. If you would like to extend these foundations
beyond the prerequisites to understand our book, we happily recommend some other terrific re-
sources: Linear Analysis by Bela Bollobas (Bollobas, 1999) covers linear algebra and functional
analysis in great depth. All of Statistics (Wasserman, 2013) provides a marvelous introduction to
statistics. Joe Blitzsteins books and courses5 on probability and inference are pegagogical gems.
And if you have not used Python before, you may want to peruse this Python tutorial6.

Forum

Associated with this book, we have launched a discussion forum, located at discuss.d2l.ai7. When
you have questions on any section of the book, you can find a link to the associated discussion
page at the end of each notebook.
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Summary

• Deep learning has revolutionized pattern recognition, introducing technology that now
powers a wide range of technologies, including computer vision, natural language process-
ing, automatic speech recognition.

• To successfully apply deep learning, you must understand how to cast a problem, the math-
ematics of modeling, the algorithms for fitting your models to data, and the engineering
techniques to implement it all.

• This book presents a comprehensive resource, including prose, figures, mathematics, and
code, all in one place.

• To answer questions related to this book, visit our forum at https://discuss.d2l.ai/.

• All notebooks are available for download on GitHub.

Exercises

1. Register an account on the discussion forum of this book discuss.d2l.ai8.

2. Install Python on your computer.

3. Follow the links at the bottom of the section to the forum, where you will be able to seek out
help and discuss the book and find answers to your questions by engaging the authors and
broader community.

8 https://discuss.d2l.ai/
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Installation

In order to get youup and running for hands-on learning experience, weneed to set you upwith an
environment for running Python, Jupyter notebooks, the relevant libraries, and the code needed
to run the book itself.

Installing Miniconda

The simplest way to get going will be to install Miniconda10. The Python 3.x version is required.
You can skip the following steps if conda has already been installed.

Visit theMinicondawebsite and determine the appropriate version for your system based on your
Python 3.x version and machine architecture. For example, if you are using macOS and Python
3.x you would download the bash script with strings “Miniconda3” and “MacOSX” in its name,
navigate to the download location and execute the installation as follows:

sh Miniconda3-latest-MacOSX-x86_64.sh -b

A Linux user with Python 3.x would download the file with strings “Miniconda3” and “Linux” in
its name and execute the following at the download location:

sh Miniconda3-latest-Linux-x86_64.sh -b

Next, initialize the shell so we can run conda directly.

~/miniconda3/bin/conda init

Now close and re-open your current shell. You should be able to create a new environment as
following:

conda create --name d2l python=3.8 -y

10 https://conda.io/en/latest/miniconda.html
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Downloading the D2L Notebooks

Next, we need to download the code of this book. You can click the “All Notebooks” tab on the top
of any HTML page to download and unzip the code. Alternatively, if you have unzip (otherwise
run sudo apt install unzip) available:

mkdir d2l-en && cd d2l-en
curl https://d2l.ai/d2l-en.zip -o d2l-en.zip
unzip d2l-en.zip && rm d2l-en.zip

Now we will want to activate the d2l environment.

conda activate d2l

Installing the Framework and the d2l Package

Before installing the deep learning framework, please first check whether or not you have proper
GPUs on your machine (the GPUs that power the display on a standard laptop do not count for our
purposes). If you are installing on a GPU server, proceed to GPU Support (page 11) for instructions
to install a GPU-supported version.

Otherwise, you can install the CPU version as follows. That will bemore than enough horsepower
to get you through the first few chapters but you will want to access GPUs before running larger
models.

pip install mxnet==1.7.0.post1

We also install the d2l package that encapsulates frequently used functions and classes in this
book.

# -U: Upgrade all packages to the newest available version
pip install -U d2l

Once they are installed, we now open the Jupyter notebook by running:

jupyter notebook

At this point, you can open http://localhost:8888 (it usually opens automatically) in your Web
browser. Then we can run the code for each section of the book. Please always execute conda ac-
tivate d2l to activate the runtime environment before running the code of the book or updating
the deep learning framework or the d2l package. To exit the environment, run conda deactivate.
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GPU Support

By default, MXNet is installed without GPU support to ensure that it will run on any computer
(including most laptops). Part of this book requires or recommends running with GPU. If your
computer has NVIDIA graphics cards and has installed CUDA11, then you should install a GPU-
enabled version. If you have installed the CPU-only version, you may need to remove it first by
running:

pip uninstall mxnet

Then we need to find the CUDA version you installed. You may check it through nvcc --version
or cat /usr/local/cuda/version.txt. Assume that you have installed CUDA 10.1, then you can
install with the following command:

# For Windows users
pip install mxnet-cu101==1.7.0 -f https://dist.mxnet.io/python

# For Linux and macOS users
pip install mxnet-cu101==1.7.0

Youmay change the last digits according to your CUDA version, e.g., cu100 for CUDA 10.0 and cu90
for CUDA 9.0.

Exercises

1. Download the code for the book and install the runtime environment.

Discussions12

11 https://developer.nvidia.com/cuda-downloads
12 https://discuss.d2l.ai/t/23
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Notation

The notation used throughout this book is summarized below.

Numbers

• x: A scalar

• x: A vector

• X: A matrix

• X: A tensor

• I: An identity matrix

• xi, [x]i: The ith element of vector x

• xij, xi,j,[X]ij, [X]i,j: The element of matrix X at row i and column j

Set Theory

• X : A set

• Z: The set of integers

• Z+: The set of positive integers

• R: The set of real numbers

• Rn: The set of n-dimensional vectors of real numbers

• Ra×b: The set of matrices of real numbers with a rows and b columns

• |X |: Cardinality (number of elements) of set X

• A ∪ B: Union of setsA and B

• A ∩ B: Intersection of setsA and B

• A \ B: Subtraction of set B from setA
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Functions and Operators

• f(·): A function

• log(·): The natural logarithm

• exp(·): The exponential function

• 1X : The indicator function

• (·)⊤: Transpose of a vector or a matrix

• X−1: Inverse of matrix X

• ⊙: Hadamard (elementwise) product

• [·, ·]: Concatenation

• |X |: Cardinality of set X

• ∥ · ∥p: Lp norm

• ∥ · ∥: L2 norm

• ⟨x, y⟩: Dot product of vectors x and y

•
∑

: Series addition

•
∏
: Series multiplication

• def
= : Definition

Calculus

• dy
dx : Derivative of y with respect to x

• ∂y
∂x : Partial derivative of y with respect to x

• ∇xy: Gradient of y with respect to x

•
∫ b
a f(x) dx: Definite integral of f from a to b with respect to x

•
∫
f(x) dx: Indefinite integral of f with respect to x

Probability and Information Theory

• P (·): Probability distribution

• z ∼ P : Random variable z has probability distribution P

• P (X | Y ): Conditional probability ofX | Y

• p(x): Probability density function

• Ex[f(x)]: Expectation of f with respect to x

• X ⊥ Y : Random variablesX and Y are independent
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• X ⊥ Y | Z: Random variables X and Y are conditionally independent given random vari-
able Z

• Var(X): Variance of random variableX

• σX : Standard deviation of random variableX

• Cov(X,Y ): Covariance of random variablesX and Y

• ρ(X,Y ): Correlation of random variablesX and Y

• H(X): Entropy of random variableX

• DKL(P∥Q): KL-divergence of distributions P andQ

Complexity

• O: Big O notation

Discussions13

13 https://discuss.d2l.ai/t/25
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1 | Introduction

Until recently, nearly every computer program that we interact with daily was coded by software
developers from first principles. Say that we wanted to write an application to manage an e-
commerce platform. After huddling around a whiteboard for a few hours to ponder the prob-
lem, we would come up with the broad strokes of a working solution that might probably look
something like this: (i) users interact with the application through an interface running in a web
browser or mobile application; (ii) our application interacts with a commercial-grade database
engine to keep track of each user s̓ state and maintain records of historical transactions; and (iii)
at the heart of our application, the business logic (youmight say, the brains) of our application spells
out inmethodical detail the appropriate action that our program should take in every conceivable
circumstance.

To build the brains of our application, we would have to step through every possible corner case
that we anticipate encountering, devising appropriate rules. Each time a customer clicks to add
an item to their shopping cart, we add an entry to the shopping cart database table, associating
that user s̓ ID with the requested product s̓ ID. While few developers ever get it completely right
the first time (it might take some test runs to work out the kinks), for themost part, we could write
such a program from first principles and confidently launch it before ever seeing a real customer.
Our ability to design automated systems from first principles that drive functioning products and
systems, often in novel situations, is a remarkable cognitive feat. And when you are able to devise
solutions that work 100% of the time, you should not be using machine learning.

Fortunately for the growing community of machine learning scientists, many tasks that we would
like to automate do not bend so easily to human ingenuity. Imagine huddling around the white-
board with the smartest minds you know, but this time you are tackling one of the following prob-
lems:

• Write a program that predicts tomorrow s̓ weather given geographic information, satellite
images, and a trailing window of past weather.

• Write a program that takes in a question, expressed in free-form text, and answers it cor-
rectly.

• Write a program that given an image can identify all the people it contains, drawing outlines
around each.

• Write a program that presents users with products that they are likely to enjoy but unlikely,
in the natural course of browsing, to encounter.

In each of these cases, even elite programmers are incapable of coding up solutions from scratch.
The reasons for this can vary. Sometimes the program that we are looking for follows a pattern
that changes over time, and we need our programs to adapt. In other cases, the relationship (say
between pixels, and abstract categories) may be too complicated, requiring thousands ormillions
of computations that are beyond our conscious understanding even if our eyes manage the task
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effortlessly. Machine learning is the study of powerful techniques that can learn from experience.
As a machine learning algorithm accumulates more experience, typically in the form of obser-
vational data or interactions with an environment, its performance improves. Contrast this with
our deterministic e-commerce platform, which performs according to the same business logic,
nomatter howmuch experience accrues, until the developers themselves learn and decide that it
is time to update the software. In this book, we will teach you the fundamentals of machine learn-
ing, and focus in particular on deep learning, a powerful set of techniques driving innovations in
areas as diverse as computer vision, natural language processing, healthcare, and genomics.

1.1 A Motivating Example

Before beginning writing, the authors of this book, like much of the work force, had to become
caffeinated. We hopped in the car and started driving. Using an iPhone, Alex called out “Hey Siri”,
awakening the phone s̓ voice recognition system. ThenMu commanded “directions to Blue Bottle
coffee shop”. The phone quickly displayed the transcription of his command. It also recognized
that we were asking for directions and launched the Maps application (app) to fulfill our request.
Once launched, the Maps app identified a number of routes. Next to each route, the phone dis-
played a predicted transit time. While we fabricated this story for pedagogical convenience, it
demonstrates that in the span of just a few seconds, our everyday interactions with a smart phone
can engage several machine learning models.

Imagine just writing a program to respond to a wake word such as “Alexa”, “OK Google”, and “Hey
Siri”. Try coding it up in a room by yourself with nothing but a computer and a code editor, as
illustrated in Fig. 1.1.1. How would you write such a program from first principles? Think about
it… the problem is hard. Every second, the microphone will collect roughly 44000 samples. Each
sample is a measurement of the amplitude of the sound wave. What rule could map reliably from
a snippet of raw audio to confident predictions {yes,no} onwhether the snippet contains thewake
word? If you are stuck, do not worry. We do not know how to write such a program from scratch
either. That is why we use machine learning.

Fig. 1.1.1: Identify a wake word.

Here is the trick. Often, even when we do not know how to tell a computer explicitly how to map
from inputs to outputs, we are nonetheless capable of performing the cognitive feat ourselves. In
other words, even if you do not know how to program a computer to recognize the word “Alexa”,
you yourself are able to recognize it. Armed with this ability, we can collect a huge dataset con-
taining examples of audio and label those that do and that do not contain the wake word. In the
machine learning approach, we do not attempt to design a system explicitly to recognize wake
words. Instead, we define a flexible program whose behavior is determined by a number of pa-
rameters. Then we use the dataset to determine the best possible set of parameters, those that
improve the performance of our program with respect to some measure of performance on the
task of interest.

You can think of the parameters as knobs that we can turn, manipulating the behavior of the
program. Fixing the parameters, we call the program a model. The set of all distinct programs
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(input-output mappings) that we can produce just bymanipulating the parameters is called a fam-
ily of models. And the meta-program that uses our dataset to choose the parameters is called a
learning algorithm.

Before we can go ahead and engage the learning algorithm, we have to define the problem pre-
cisely, pinning down the exact nature of the inputs and outputs, and choosing an appropriate
model family. In this case, our model receives a snippet of audio as input, and the model gener-
ates a selection among {yes,no} as output. If all goes according to plan the model s̓ guesses will
typically be correct as to whether the snippet contains the wake word.

If we choose the right family of models, there should exist one setting of the knobs such that the
model fires “yes” every time it hears the word “Alexa”. Because the exact choice of the wake word
is arbitrary, we will probably need a model family sufficiently rich that, via another setting of the
knobs, it could fire “yes” only upon hearing the word “Apricot”. We expect that the same model
family should be suitable for “Alexa” recognition and “Apricot” recognition because they seem,
intuitively, to be similar tasks. However, we might need a different family of models entirely if we
want to deal with fundamentally different inputs or outputs, say if we wanted tomap from images
to captions, or from English sentences to Chinese sentences.

As you might guess, if we just set all of the knobs randomly, it is unlikely that our model will
recognize “Alexa”, “Apricot”, or any other English word. In machine learning, the learning is the
process by which we discover the right setting of the knobs coercing the desired behavior from
our model. In other words, we train our model with data. As shown in Fig. 1.1.2, the training
process usually looks like the following:

1. Start off with a randomly initialized model that cannot do anything useful.

2. Grab some of your data (e.g., audio snippets and corresponding {yes,no} labels).

3. Tweak the knobs so the model sucks less with respect to those examples.

4. Repeat Step 2 and 3 until the model is awesome.

Fig. 1.1.2: A typical training process.

To summarize, rather than code up a wake word recognizer, we code up a program that can learn
to recognize wake words, if we present it with a large labeled dataset. You can think of this act of
determining a programs̓ behavior by presenting it with a dataset as programming with data. That
is to say, we can “program” a cat detector by providing our machine learning system with many
examples of cats and dogs. This way the detector will eventually learn to emit a very large positive
number if it is a cat, a very large negative number if it is a dog, and something closer to zero if it is
not sure, and this barely scratches the surface of what machine learning can do. Deep learning,
which we will explain in greater detail later, is just one among many popular methods for solving
machine learning problems.
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1.2 Key Components

In our wake word example, we described a dataset consisting of audio snippets and binary labels,
and we gave a hand-wavy sense of how we might train a model to approximate a mapping from
snippets to classifications. This sort of problem, wherewe try to predict a designated unknown la-
bel based on known inputs given a dataset consisting of examples for which the labels are known,
is called supervised learning. This is just one among many kinds of machine learning problems.
Later we will take a deep dive into different machine learning problems. First, we would like to
shed more light on some core components that will follow us around, no matter what kind of
machine learning problem we take on:

1. The data that we can learn from.

2. A model of how to transform the data.

3. An objective function that quantifies how well (or badly) the model is doing.

4. An algorithm to adjust the model s̓ parameters to optimize the objective function.

1.2.1 Data

It might go without saying that you cannot do data science without data. We could lose hundreds
of pages pondering what precisely constitutes data, but for now, we will err on the practical side
and focus on the key properties to be concerned with. Generally, we are concerned with a col-
lection of examples. In order to work with data usefully, we typically need to come up with a
suitable numerical representation. Each example (or data point, data instance, sample) typically
consists of a set of attributes called features (or covariates), from which the model must make its
predictions. In the supervised learning problems above, the thing to predict is a special attribute
that is designated as the label (or target).

If we were working with image data, each individual photograph might constitute an example,
each represented by an ordered list of numerical values corresponding to the brightness of each
pixel. A 200 × 200 color photograph would consist of 200 × 200 × 3 = 120000 numerical values,
corresponding to the brightness of the red, green, and blue channels for each spatial location.
In another traditional task, we might try to predict whether or not a patient will survive, given a
standard set of features such as age, vital signs, and diagnoses.

When every example is characterized by the same number of numerical values, we say that the
data consist of fixed-length vectors and we describe the constant length of the vectors as the di-
mensionality of the data. As you might imagine, fixed-length can be a convenient property. If we
wanted to train a model to recognize cancer in microscopy images, fixed-length inputs mean we
have one less thing to worry about.

However, not all data can easily be represented as fixed-length vectors. While we might expect
microscope images to come from standard equipment, we cannot expect images mined from the
Internet to all show up with the same resolution or shape. For images, we might consider crop-
ping them all to a standard size, but that strategy only gets us so far. We risk losing information
in the cropped out portions. Moreover, text data resist fixed-length representations even more
stubbornly. Consider the customer reviews left on e-commerce sites such as Amazon, IMDB, and
TripAdvisor. Some are short: “it stinks!”. Others ramble for pages. One major advantage of deep
learning over traditionalmethods is the comparative gracewithwhichmodernmodels can handle
varying-length data.
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Generally, the more data we have, the easier our job becomes. When we have more data, we
can train more powerful models and rely less heavily on pre-conceived assumptions. The regime
change from (comparatively) small to big data is a major contributor to the success of modern
deep learning. To drive the point home, many of themost excitingmodels in deep learning do not
work without large datasets. Some others work in the small data regime, but are no better than
traditional approaches.

Finally, it is not enough to have lots of data and to process it cleverly. We need the right data. If
the data are full of mistakes, or if the chosen features are not predictive of the target quantity of
interest, learning is going to fail. The situation is captured well by the cliché: garbage in, garbage
out. Moreover, poor predictive performance is not the only potential consequence. In sensitive
applications of machine learning, like predictive policing, resume screening, and risk models
used for lending, we must be especially alert to the consequences of garbage data. One common
failure mode occurs in datasets where some groups of people are unrepresented in the training
data. Imagine applying a skin cancer recognition system in the wild that had never seen black
skin before. Failure can also occur when the data do not merely under-represent some groups
but reflect societal prejudices. For example, if past hiring decisions are used to train a predictive
model that will be used to screen resumes, then machine learning models could inadvertently
capture and automate historical injustices. Note that this can all happenwithout the data scientist
actively conspiring, or even being aware.

1.2.2 Models

Most machine learning involves transforming the data in some sense. We might want to build a
system that ingests photos and predicts smiley-ness. Alternatively, wemight want to ingest a set of
sensor readings and predict how normal vs. anomalous the readings are. Bymodel, we denote the
computational machinery for ingesting data of one type, and spitting out predictions of a possibly
different type. In particular, we are interested in statistical models that can be estimated from
data. While simple models are perfectly capable of addressing appropriately simple problems,
the problems that we focus on in this book stretch the limits of classical methods. Deep learning
is differentiated fromclassical approaches principally by the set of powerfulmodels that it focuses
on. Thesemodels consist ofmany successive transformations of the data that are chained together
top to bottom, thus the name deep learning. On our way to discussing deep models, we will also
discuss some more traditional methods.

1.2.3 Objective Functions

Earlier, we introduced machine learning as learning from experience. By learning here, we mean
improving at some task over time. But who is to say what constitutes an improvement? Youmight
imagine that we could propose to update our model, and some people might disagree on whether
the proposed update constituted an improvement or a decline.

In order to develop a formal mathematical system of learning machines, we need to have formal
measures of how good (or bad) our models are. In machine learning, and optimization more
generally, we call these objective functions. By convention, we usually define objective functions
so that lower is better. This is merely a convention. You can take any function for which higher is
better, and turn it into a new function that is qualitatively identical but for which lower is better
by flipping the sign. Because lower is better, these functions are sometimes called loss functions.

When trying to predict numerical values, the most common loss function is squared error, i.e., the
square of the difference between the prediction and the ground-truth. For classification, themost
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common objective is to minimize error rate, i.e., the fraction of examples on which our predic-
tions disagree with the ground truth. Some objectives (e.g., squared error) are easy to optimize.
Others (e.g., error rate) are difficult to optimize directly, owing to non-differentiability or other
complications. In these cases, it is common to optimize a surrogate objective.

Typically, the loss function is defined with respect to the model s̓ parameters and depends upon
the dataset. We learn the best values of our model s̓ parameters by minimizing the loss incurred
on a set consisting of some number of examples collected for training. However, doing well on
the training data does not guarantee that we will do well on unseen data. So we will typically want
to split the available data into two partitions: the training dataset (or training set, for fitting model
parameters) and the test dataset (or test set, which is held out for evaluation), reporting how the
model performs on both of them. You could think of training performance as being like a stu-
dent s̓ scores on practice exams used to prepare for some real final exam. Even if the results are
encouraging, that does not guarantee success on the final exam. In other words, the test perfor-
mance can deviate significantly from the training performance. When a model performs well on
the training set but fails to generalize to unseen data, we say that it is overfitting. In real-life terms,
this is like flunking the real exam despite doing well on practice exams.

1.2.4 Optimization Algorithms

Oncewehave got somedata source and representation, amodel, and awell-definedobjective func-
tion, we need an algorithm capable of searching for the best possible parameters for minimizing
the loss function. Popular optimization algorithms for deep learning are based on an approach
called gradient descent. In short, at each step, thismethod checks to see, for each parameter, which
way the training set loss would move if you perturbed that parameter just a small amount. It then
updates the parameter in the direction that may reduce the loss.

1.3 Kinds of Machine Learning Problems

The wake word problem in our motivating example is just one among many problems that ma-
chine learning can tackle. To motivate the reader further and provide us with some common
language when we talk about more problems throughout the book, in the following we list a sam-
pling of machine learning problems. We will constantly refer to our aforementioned concepts
such as data, models, and training techniques.

1.3.1 Supervised Learning

Supervised learning addresses the task of predicting labels given input features. Each feature–
label pair is called an example. Sometimes, when the context is clear, we may use the term exam-
ples to refer to a collection of inputs, even when the corresponding labels are unknown. Our goal
is to produce a model that maps any input to a label prediction.

To ground this description in a concrete example, if wewereworking in healthcare, thenwemight
want to predictwhether or not a patientwouldhave aheart attack. This observation, “heart attack”
or “no heart attack”, would be our label. The input featuresmight be vital signs such as heart rate,
diastolic blood pressure, and systolic blood pressure.

The supervision comes into play because for choosing the parameters, we (the supervisors) pro-
vide themodelwith a dataset consisting of labeled examples, where each example ismatchedwith
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the ground-truth label. In probabilistic terms, we typically are interested in estimating the con-
ditional probability of a label given input features. While it is just one among several paradigms
withinmachine learning, supervised learning accounts for themajority of successful applications
of machine learning in industry. Partly, that is because many important tasks can be described
crisply as estimating theprobability of somethingunknowngiven aparticular set of available data:

• Predict cancer vs. not cancer, given a computer tomography image.

• Predict the correct translation in French, given a sentence in English.

• Predict the price of a stock next month based on this months̓ financial reporting data.

Even with the simple description “predicting labels given input features” supervised learning can
take a great many forms and require a great many modeling decisions, depending on (among
other considerations) the type, size, and the number of inputs and outputs. For example, we use
different models to process sequences of arbitrary lengths and for processing fixed-length vector
representations. We will visit many of these problems in depth throughout this book.

Informally, the learning process looks something like the following. First, grab a big collection of
examples for which the features are known and select from them a random subset, acquiring the
ground-truth labels for each. Sometimes these labels might be available data that have already
been collected (e.g., did a patient die within the following year?) and other times we might need
to employ human annotators to label the data, (e.g., assigning images to categories). Together,
these inputs and corresponding labels comprise the training set. We feed the training dataset
into a supervised learning algorithm, a function that takes as input a dataset and outputs another
function: the learned model. Finally, we can feed previously unseen inputs to the learned model,
using its outputs as predictions of the corresponding label. The full process is drawn in Fig. 1.3.1.

Fig. 1.3.1: Supervised learning.

Regression

Perhaps the simplest supervised learning task to wrap your head around is regression. Consider,
for example, a set of data harvested from a database of home sales. We might construct a table,
where each row corresponds to a different house, and each column corresponds to some relevant
attribute, such as the square footage of a house, the number of bedrooms, the number of bath-
rooms, and the number of minutes (walking) to the center of town. In this dataset, each example
would be a specific house, and the corresponding feature vector would be one row in the table.
If you live in New York or San Francisco, and you are not the CEO of Amazon, Google, Microsoft,
or Facebook, the (sq. footage, no. of bedrooms, no. of bathrooms, walking distance) feature vec-
tor for your home might look something like: [600, 1, 1, 60]. However, if you live in Pittsburgh, it
might lookmore like [3000, 4, 3, 10]. Feature vectors like this are essential formost classicmachine
learning algorithms.

What makes a problem a regression is actually the output. Say that you are in the market for a
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new home. You might want to estimate the fair market value of a house, given some features like
above. The label, the price of sale, is a numerical value. When labels take on arbitrary numerical
values, we call this a regression problem. Our goal is to produce amodel whose predictions closely
approximate the actual label values.

Lots of practical problems are well-described regression problems. Predicting the rating that a
user will assign to a movie can be thought of as a regression problem and if you designed a great
algorithm to accomplish this feat in 2009, youmight have won the 1-million-dollar Netflix prize14.
Predicting the length of stay for patients in the hospital is also a regression problem. A good rule
of thumb is that any how much? or how many? problem should suggest regression, such as:

• Howmany hours will this surgery take?

• Howmuch rainfall will this town have in the next six hours?

Even if you have never worked with machine learning before, you have probably worked through
a regression problem informally. Imagine, for example, that you had your drains repaired and
that your contractor spent 3 hours removing gunk from your sewage pipes. Then he sent you a
bill of 350 dollars. Now imagine that your friend hired the same contractor for 2 hours and that he
received a bill of 250 dollars. If someone then asked you how much to expect on their upcoming
gunk-removal invoice youmightmake some reasonable assumptions, such asmore hours worked
costs more dollars. You might also assume that there is some base charge and that the contractor
then charges per hour. If these assumptions held true, then given these two data examples, you
could already identify the contractor s̓ pricing structure: 100 dollars per hour plus 50 dollars to
show up at your house. If you followed that much then you already understand the high-level idea
behind linear regression.

In this case, we could produce the parameters that exactlymatched the contractor s̓ prices. Some-
times this is not possible, e.g., if some of the variance owes to a few factors besides your two fea-
tures. In these cases, we will try to learn models that minimize the distance between our predic-
tions and the observed values. In most of our chapters, we will focus on minimizing the squared
error loss function. As we will see later, this loss corresponds to the assumption that our data
were corrupted by Gaussian noise.

Classification

While regression models are great for addressing how many? questions, lots of problems do not
bend comfortably to this template. For example, a bankwants to add check scanning to its mobile
app. Thiswould involve the customer snapping a photo of a checkwith their smart phone s̓ camera
and the appwould need to be able to automatically understand text seen in the image. Specifically,
it would also need to understand handwritten text to be even more robust, such as mapping a
handwritten character to one of the known characters. This kind of which one? problem is called
classification. It is treatedwith a different set of algorithms than those used for regression although
many techniques will carry over.

In classification, we want our model to look at features, e.g., the pixel values in an image, and then
predict which category (formally called class), among some discrete set of options, an example
belongs. For handwritten digits, we might have ten classes, corresponding to the digits 0 through
9. The simplest form of classification is when there are only two classes, a problem which we call
binary classification. For example, our dataset could consist of images of animals and our labels
might be the classes {cat,dog}. While in regression, we sought a regressor to output a numerical
value, in classification, we seek a classifier, whose output is the predicted class assignment.

14 https://en.wikipedia.org/wiki/Netflix_Prize
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For reasons that we will get into as the book gets more technical, it can be hard to optimize a
model that can only output a hard categorical assignment, e.g., either “cat” or “dog”. In these
cases, it is usuallymuch easier to instead express ourmodel in the language of probabilities. Given
features of an example, our model assigns a probability to each possible class. Returning to our
animal classification examplewhere the classes are {cat,dog}, a classifiermight see an image and
output the probability that the image is a cat as 0.9. We can interpret this number by saying that
the classifier is 90% sure that the image depicts a cat. The magnitude of the probability for the
predicted class conveys one notion of uncertainty. It is not the only notion of uncertainty and we
will discuss others in more advanced chapters.

When we have more than two possible classes, we call the problem multiclass classification. Com-
mon examples include hand-written character recognition {0, 1, 2, ...9, a,b, c, ...}. While we at-
tacked regression problems by trying to minimize the squared error loss function, the common
loss function for classification problems is called cross-entropy, whose name can be demystified
via an introduction to information theory in subsequent chapters.

Note that themost likely class is not necessarily the one that you are going to use for your decision.
Assume that you find a beautiful mushroom in your backyard as shown in Fig. 1.3.2.

Fig. 1.3.2: Death cap—do not eat!

Now, assume that you built a classifier and trained it to predict if a mushroom is poisonous based
on a photograph. Say our poison-detection classifier outputs that the probability that Fig. 1.3.2
contains a death cap is 0.2. In other words, the classifier is 80% sure that our mushroom is not
a death cap. Still, you would have to be a fool to eat it. That is because the certain benefit of a
delicious dinner is notworth a 20% risk of dying from it. In otherwords, the effect of the uncertain
risk outweighs the benefit by far. Thus, we need to compute the expected risk that we incur as the
loss function, i.e., we need to multiply the probability of the outcome with the benefit (or harm)
associatedwith it. In this case, the loss incurred by eating themushroomcan be 0.2×∞+0.8×0 =
∞, whereas the loss of discarding it is 0.2 × 0 + 0.8 × 1 = 0.8. Our caution was justified: as any
mycologist would tell us, the mushroom in Fig. 1.3.2 actually is a death cap.

Classification can get much more complicated than just binary, multiclass, or even multi-label
classification. For instance, there are some variants of classification for addressing hierarchies.
Hierarchies assume that there exist some relationships among the many classes. So not all er-
rors are equal—if we must err, we would prefer to misclassify to a related class rather than to a
distant class. Usually, this is referred to as hierarchical classification. One early example is due to
Linnaeus15, who organized the animals in a hierarchy.

15 https://en.wikipedia.org/wiki/Carl_Linnaeus
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In the case of animal classification, it might not be so bad to mistake a poodle (a dog breed) for
a schnauzer (another dog breed), but our model would pay a huge penalty if it confused a poodle
for a dinosaur. Which hierarchy is relevant might depend on how you plan to use the model. For
example, rattle snakes and garter snakes might be close on the phylogenetic tree, but mistaking a
rattler for a garter could be deadly.

Tagging

Some classification problems fit neatly into the binary or multiclass classification setups. For ex-
ample, we could train a normal binary classifier to distinguish cats from dogs. Given the current
state of computer vision, we can do this easily, with off-the-shelf tools. Nonetheless, no matter
how accurate our model gets, we might find ourselves in trouble when the classifier encounters
an image of the Town Musicians of Bremen, a popular German fairy tale featuring four animals in
Fig. 1.3.3.

Fig. 1.3.3: A donkey, a dog, a cat, and a rooster.

As you can see, there is a cat in Fig. 1.3.3, and a rooster, a dog, and a donkey, with some trees in
the background. Depending on what we want to do with our model ultimately, treating this as a
binary classification problem might not make a lot of sense. Instead, we might want to give the
model the option of saying the image depicts a cat, a dog, a donkey, and a rooster.

The problem of learning to predict classes that are notmutually exclusive is calledmulti-label clas-
sification. Auto-tagging problems are typically best described as multi-label classification prob-
lems. Think of the tags people might apply to posts on a technical blog, e.g., “machine learning”,
“technology”, “gadgets”, “programming languages”, “Linux”, “cloud computing”, “AWS”. A typical
article might have 5–10 tags applied because these concepts are correlated. Posts about “cloud
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computing” are likely to mention “AWS” and posts about “machine learning” could also deal with
“programming languages”.

We also have to deal with this kind of problemwhen dealing with the biomedical literature, where
correctly tagging articles is important because it allows researchers to do exhaustive reviews of
the literature. At the National Library of Medicine, a number of professional annotators go over
each article that gets indexed in PubMed to associate it with the relevant terms from MeSH, a
collection of roughly 28000 tags. This is a time-consuming process and the annotators typically
have a one-year lag between archiving and tagging. Machine learning can be used here to provide
provisional tags until each article can have a proper manual review. Indeed, for several years, the
BioASQ organization has hosted competitions16 to do precisely this.

Search

Sometimes we do not just want to assign each example to a bucket or to a real value. In the field
of information retrieval, we want to impose a ranking on a set of items. Take web search for an
example. The goal is less to determinewhether a particular page is relevant for a query, but rather,
which one of the plethora of search results is most relevant for a particular user. We really care
about the ordering of the relevant search results and our learning algorithm needs to produce
ordered subsets of elements from a larger set. In other words, if we are asked to produce the first
5 letters from the alphabet, there is a difference between returning “A B C D E” and “C A B E D”.
Even if the result set is the same, the ordering within the set matters.

One possible solution to this problem is to first assign to every element in the set a corresponding
relevance score and then to retrieve the top-rated elements. PageRank17, the original secret sauce
behind theGoogle search enginewas an early example of such a scoring systembut it was peculiar
in that it did not depend on the actual query. Here they relied on a simple relevance filter to
identify the set of relevant items and then on PageRank to order those results that contained the
query term. Nowadays, search engines use machine learning and behavioral models to obtain
query-dependent relevance scores. There are entire academic conferences devoted to this subject.

Recommender Systems

Recommender systems are another problem setting that is related to search and ranking. The
problems are similar insofar as the goal is to display a set of relevant items to the user. The main
difference is the emphasis on personalization to specific users in the context of recommender sys-
tems. For instance, for movie recommendations, the results page for a science fiction fan and
the results page for a connoisseur of Peter Sellers comedies might differ significantly. Similar
problems pop up in other recommendation settings, e.g., for retail products, music, and news
recommendation.

In some cases, customers provide explicit feedback communicating howmuch they liked a partic-
ular product (e.g., the product ratings and reviews on Amazon, IMDb, and GoodReads). In some
other cases, they provide implicit feedback, e.g., by skipping titles on a playlist, which might in-
dicate dissatisfaction but might just indicate that the song was inappropriate in context. In the
simplest formulations, these systems are trained to estimate some score, such as an estimated
rating or the probability of purchase, given a user and an item.

16 http://bioasq.org/
17 https://en.wikipedia.org/wiki/PageRank
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Given such amodel, for any given user, we could retrieve the set of objects with the largest scores,
which could then be recommended to the user. Production systems are considerably more ad-
vanced and take detailed user activity and item characteristics into account when computing such
scores. Fig. 1.3.4 is an example of deep learning books recommended by Amazon based on per-
sonalization algorithms tuned to capture one s̓ preferences.

Fig. 1.3.4: Deep learning books recommended by Amazon.

Despite their tremendous economic value, recommendation systems naively built on top of pre-
dictive models suffer some serious conceptual flaws. To start, we only observe censored feedback:
users preferentially rate movies that they feel strongly about. For example, on a five-point scale,
you might notice that items receive many five and one star ratings but that there are conspicu-
ously few three-star ratings. Moreover, current purchase habits are often a result of the recom-
mendation algorithm currently in place, but learning algorithms do not always take this detail
into account. Thus it is possible for feedback loops to form where a recommender system pref-
erentially pushes an item that is then taken to be better (due to greater purchases) and in turn is
recommended even more frequently. Many of these problems about how to deal with censoring,
incentives, and feedback loops, are important open research questions.
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Sequence Learning

So far, we have looked at problems where we have some fixed number of inputs and produce a
fixed number of outputs. For example, we considered predicting house prices from a fixed set of
features: square footage, number of bedrooms, number of bathrooms,walking time to downtown.
We also discussedmapping from an image (of fixed dimension) to the predicted probabilities that
it belongs to each of a fixed number of classes, or taking a user ID and a product ID, and predicting
a star rating. In these cases, once we feed our fixed-length input into the model to generate an
output, the model immediately forgets what it just saw.

This might be fine if our inputs truly all have the same dimensions and if successive inputs truly
have nothing to do with each other. But how would we deal with video snippets? In this case,
each snippet might consist of a different number of frames. And our guess of what is going on in
each frame might be much stronger if we take into account the previous or succeeding frames.
Same goes for language. One popular deep learning problem is machine translation: the task of
ingesting sentences in some source language and predicting their translation in another language.

These problems also occur in medicine. We might want a model to monitor patients in the in-
tensive care unit and to fire off alerts if their risk of death in the next 24 hours exceeds some
threshold. We definitely would not want this model to throw away everything it knows about the
patient history each hour and just make its predictions based on the most recent measurements.

These problems are among the most exciting applications of machine learning and they are in-
stances of sequence learning. They require a model to either ingest sequences of inputs or to
emit sequences of outputs (or both). Specifically, sequence to sequence learning considers prob-
lemswhere input and output are both variable-length sequences, such asmachine translation and
transcribing text from the spoken speech. While it is impossible to consider all types of sequence
transformations, the following special cases are worth mentioning.

Tagging and Parsing. This involves annotating a text sequence with attributes. In other words,
the number of inputs and outputs is essentially the same. For instance, we might want to know
where the verbs and subjects are. Alternatively, we might want to know which words are the
named entities. In general, the goal is to decompose and annotate text based on structural and
grammatical assumptions to get some annotation. This sounds more complex than it actually is.
Below is a very simple example of annotating a sentence with tags indicating which words refer
to named entities (tagged as “Ent”).

Tom has dinner in Washington with Sally
Ent - - - Ent - Ent

Automatic Speech Recognition. With speech recognition, the input sequence is an audio record-
ing of a speaker (shown in Fig. 1.3.5), and the output is the textual transcript of what the speaker
said. The challenge is that there are manymore audio frames (sound is typically sampled at 8kHz
or 16kHz) than text, i.e., there is no 1:1 correspondence between audio and text, since thousands
of samples may correspond to a single spoken word. These are sequence to sequence learning
problems where the output is much shorter than the input.
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Fig. 1.3.5: -D-e-e-p- L-ea-r-ni-ng- in an audio recording.

Text to Speech. This is the inverse of automatic speech recognition. In other words, the input is
text and the output is an audio file. In this case, the output is much longer than the input. While
it is easy for humans to recognize a bad audio file, this is not quite so trivial for computers.

Machine Translation. Unlike the case of speech recognition, where corresponding inputs and
outputs occur in the same order (after alignment), in machine translation, order inversion can be
vital. In other words, while we are still converting one sequence into another, neither the number
of inputs and outputs nor the order of corresponding data examples are assumed to be the same.
Consider the following illustrative example of the peculiar tendency of Germans to place the verbs
at the end of sentences.

German: Haben Sie sich schon dieses grossartige Lehrwerk angeschaut?
English: Did you already check out this excellent tutorial?
Wrong alignment: Did you yourself already this excellent tutorial looked-at?

Many related problems pop up in other learning tasks. For instance, determining the order in
which a user reads a webpage is a two-dimensional layout analysis problem. Dialogue problems
exhibit all kinds of additional complications, where determining what to say next requires taking
into account real-world knowledge and the prior state of the conversation across long temporal
distances. These are active areas of research.

1.3.2 Unsupervised learning

All the examples so far were related to supervised learning, i.e., situations where we feed the
model a giant dataset containing both the features and corresponding label values. You could
think of the supervised learner as having an extremely specialized job and an extremely banal
boss. The boss stands over your shoulder and tells you exactly what to do in every situation until
you learn to map from situations to actions. Working for such a boss sounds pretty lame. On the
other hand, it is easy to please this boss. You just recognize the pattern as quickly as possible and
imitate their actions.

In a completely opposite way, it could be frustrating to work for a boss who has no idea what they
want you to do. However, if you plan to be a data scientist, you had better get used to it. The boss
might just hand you a giant dump of data and tell you to do some data science with it! This sounds
vague because it is. We call this class of problems unsupervised learning, and the type and number
of questions we could ask is limited only by our creativity. We will address unsupervised learning
techniques in later chapters. To whet your appetite for now, we describe a few of the following
questions you might ask.

• Can we find a small number of prototypes that accurately summarize the data? Given a
set of photos, can we group them into landscape photos, pictures of dogs, babies, cats, and
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mountain peaks? Likewise, given a collection of usersʼ browsing activities, can we group
them into users with similar behavior? This problem is typically known as clustering.

• Canwe find a small number of parameters that accurately capture the relevant properties of
the data? The trajectories of a ball are quite well described by velocity, diameter, and mass
of the ball. Tailors have developed a small number of parameters that describe human body
shape fairly accurately for the purpose of fitting clothes. These problems are referred to as
subspace estimation. If the dependence is linear, it is called principal component analysis.

• Is there a representation of (arbitrarily structured) objects in Euclidean space such that sym-
bolic properties can be well matched? This can be used to describe entities and their rela-
tions, such as “Rome”− “Italy”+ “France”= “Paris”.

• Is there a description of the root causes of much of the data that we observe? For instance,
if we have demographic data about house prices, pollution, crime, location, education, and
salaries, can we discover how they are related simply based on empirical data? The fields
concerned with causality and probabilistic graphical models address this problem.

• Another important and exciting recent development in unsupervised learning is the advent
of generative adversarial networks. These give us a procedural way to synthesize data, even
complicated structured data like images and audio. The underlying statistical mechanisms
are tests to check whether real and fake data are the same.

1.3.3 Interacting with an Environment

So far, we have not discussed where data actually come from, or what actually happens when a
machine learning model generates an output. That is because supervised learning and unsuper-
vised learning do not address these issues in a very sophisticatedway. In either case, we grab a big
pile of data upfront, then set our pattern recognitionmachines inmotionwithout ever interacting
with the environment again. Because all of the learning takes place after the algorithm is discon-
nected from the environment, this is sometimes called offline learning. For supervised learning,
the process by considering data collection from an environment looks like Fig. 1.3.6.

Fig. 1.3.6: Collecting data for supervised learning from an environment.

This simplicity of offline learning has its charms. The upside is that we can worry about pattern
recognition in isolation, without any distraction from these other problems. But the downside
is that the problem formulation is quite limiting. If you are more ambitious, or if you grew up
readingAsimov s̓ Robot series, then youmight imagine artificially intelligent bots capable not only
of making predictions, but also of taking actions in the world. We want to think about intelligent
agents, not just predictive models. This means that we need to think about choosing actions, not
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just making predictions. Moreover, unlike predictions, actions actually impact the environment.
If we want to train an intelligent agent, we must account for the way its actions might impact the
future observations of the agent.

Considering the interaction with an environment opens a whole set of new modeling questions.
The following are just a few examples.

• Does the environment remember what we did previously?

• Does the environment want to help us, e.g., a user reading text into a speech recognizer?

• Does the environment want to beat us, i.e., an adversarial setting like spam filtering (against
spammers) or playing a game (vs. an opponent)?

• Does the environment not care?

• Does the environment have shifting dynamics? For example, does future data always re-
semble the past or do the patterns change over time, either naturally or in response to our
automated tools?

This last question raises the problem of distribution shift, when training and test data are different.
It is a problem thatmost of us have experiencedwhen taking examswritten by a lecturer, while the
homework was composed by his teaching assistants. Next, we will briefly describe reinforcement
learning, a setting that explicitly considers interactions with an environment.

1.3.4 Reinforcement Learning

If you are interested in usingmachine learning to develop an agent that interacts with an environ-
ment and takes actions, then you are probably going towind up focusing on reinforcement learning.
This might include applications to robotics, to dialogue systems, and even to developing artificial
intelligence (AI) for video games. Deep reinforcement learning, which applies deep learning to rein-
forcement learning problems, has surged in popularity. The breakthrough deep Q-network that
beat humans at Atari games using only the visual input, and the AlphaGo program that dethroned
the world champion at the board game Go are two prominent examples.

Reinforcement learning gives a very general statement of a problem, in which an agent interacts
with an environment over a series of time steps. At each time step, the agent receives some ob-
servation from the environment and must choose an action that is subsequently transmitted back
to the environment via some mechanism (sometimes called an actuator). Finally, the agent re-
ceives a reward from the environment. This process is illustrated in Fig. 1.3.7. The agent then
receives a subsequent observation, and chooses a subsequent action, and so on. The behavior of
an reinforcement learning agent is governed by a policy. In short, a policy is just a function that
maps from observations of the environment to actions. The goal of reinforcement learning is to
produce a good policy.
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Fig. 1.3.7: The interaction between reinforcement learning and an environment.

It is hard to overstate the generality of the reinforcement learning framework. For example, we
can cast any supervised learning problemas a reinforcement learning problem. Saywe had a clas-
sification problem. We could create a reinforcement learning agent with one action correspond-
ing to each class. We could then create an environmentwhich gave a reward thatwas exactly equal
to the loss function from the original supervised learning problem.

That being said, reinforcement learning can also address many problems that supervised learn-
ing cannot. For example, in supervised learning we always expect that the training input comes
associated with the correct label. But in reinforcement learning, we do not assume that for each
observation the environment tells us the optimal action. In general, we just get some reward.
Moreover, the environment may not even tell us which actions led to the reward.

Consider for example the game of chess. The only real reward signal comes at the end of the
game when we either win, which wemight assign a reward of 1, or when we lose, which we could
assign a reward of -1. So reinforcement learners must deal with the credit assignment problem:
determining which actions to credit or blame for an outcome. The same goes for an employee
who gets a promotion onOctober 11. That promotion likely reflects a large number of well-chosen
actions over the previous year. Getting more promotions in the future requires figuring out what
actions along the way led to the promotion.

Reinforcement learners may also have to deal with the problem of partial observability. That is,
the current observation might not tell you everything about your current state. Say a cleaning
robot found itself trapped in one of many identical closets in a house. Inferring the precise lo-
cation (and thus state) of the robot might require considering its previous observations before
entering the closet.

Finally, at any given point, reinforcement learnersmight know of one good policy, but theremight
be many other better policies that the agent has never tried. The reinforcement learner must
constantly choose whether to exploit the best currently-known strategy as a policy, or to explore
the space of strategies, potentially giving up some short-run reward in exchange for knowledge.

The general reinforcement learning problem is a very general setting. Actions affect subsequent
observations. Rewards are only observed corresponding to the chosen actions. The environment
may be either fully or partially observed. Accounting for all this complexity at once may ask too
much of researchers. Moreover, not every practical problem exhibits all this complexity. As a
result, researchers have studied a number of special cases of reinforcement learning problems.

When the environment is fully observed, we call the reinforcement learning problem a Markov
decision process. When the state does not depend on the previous actions, we call the problem
a contextual bandit problem. When there is no state, just a set of available actions with initially
unknown rewards, this problem is the classic multi-armed bandit problem.
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1.4 Roots

We have just reviewed a small subset of problems that machine learning can address. For a di-
verse set of machine learning problems, deep learning provides powerful tools for solving them.
Although many deep learning methods are recent inventions, the core idea of programming with
data and neural networks (names of many deep learning models) has been studied for centuries.
In fact, humans have held the desire to analyze data and to predict future outcomes for long and
much of natural science has its roots in this. For instance, the Bernoulli distribution is named af-
ter Jacob Bernoulli (1655–1705)18, and the Gaussian distribution was discovered by Carl Friedrich
Gauss (1777–1855)19. He invented, for instance, the least mean squares algorithm, which is still
used today for countless problems from insurance calculations to medical diagnostics. These
tools gave rise to an experimental approach in the natural sciences—for instance, Ohms̓ law re-
lating current and voltage in a resistor is perfectly described by a linear model.

Even in the middle ages, mathematicians had a keen intuition of estimates. For instance, the
geometry book of Jacob Köbel (1460–1533)20 illustrates averaging the length of 16 adult mens̓ feet
to obtain the average foot length.

Fig. 1.4.1: Estimating the length of a foot.

Fig. 1.4.1 illustrates how this estimator works. The 16 adult men were asked to line up in a row,
when leaving the church. Their aggregate length was then divided by 16 to obtain an estimate for
what now amounts to 1 foot. This “algorithm” was later improved to deal with misshapen feet—
the 2 men with the shortest and longest feet respectively were sent away, averaging only over the
remainder. This is one of the earliest examples of the trimmed mean estimate.

18 https://en.wikipedia.org/wiki/Jacob_Bernoulli
19 https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
20 https://www.maa.org/press/periodicals/convergence/mathematical-treasures-jacob-kobels-geometry
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Statistics really took offwith the collection and availability of data. One of its titans, Ronald Fisher
(1890–1962)21, contributed significantly to its theory and also its applications in genetics. Many of
his algorithms (such as linear discriminant analysis) and formula (such as the Fisher information
matrix) are still in frequent use today. In fact, even the Iris dataset that Fisher released in 1936
is still used sometimes to illustrate machine learning algorithms. He was also a proponent of
eugenics, which should remind us that the morally dubious use of data science has as long and
enduring a history as its productive use in industry and the natural sciences.

A second influence for machine learning came from information theory by Claude Shannon
(1916–2001)22 and the theory of computation via Alan Turing (1912–1954)23. Turing posed the
question “can machines think?” in his famous paper Computing Machinery and Intelligence (Tur-
ing, 1950). In what he described as the Turing test, a machine can be considered intelligent if it is
difficult for a human evaluator to distinguish between the replies from a machine and a human
based on textual interactions.

Another influence can be found in neuroscience and psychology. After all, humans clearly exhibit
intelligent behavior. It is thus only reasonable to ask whether one could explain and possibly re-
verse engineer this capacity. One of the oldest algorithms inspired in this fashion was formulated
by Donald Hebb (1904–1985)24. In his groundbreaking book The Organization of Behavior (Hebb
& Hebb, 1949), he posited that neurons learn by positive reinforcement. This became known as
the Hebbian learning rule. It is the prototype of Rosenblatt s̓ perceptron learning algorithm and it
laid the foundations of many stochastic gradient descent algorithms that underpin deep learning
today: reinforce desirable behavior and diminish undesirable behavior to obtain good settings of
the parameters in a neural network.

Biological inspiration is what gave neural networks their name. For over a century (dating back
to the models of Alexander Bain, 1873 and James Sherrington, 1890), researchers have tried to
assemble computational circuits that resemble networks of interacting neurons. Over time, the
interpretation of biology has become less literal but the name stuck. At its heart, lie a few key
principles that can be found in most networks today:

• The alternation of linear and nonlinear processing units, often referred to as layers.

• The use of the chain rule (also known as backpropagation) for adjusting parameters in the
entire network at once.

After initial rapid progress, research in neural networks languished from around 1995 until 2005.
This was mainly due to two reasons. First, training a network is computationally very expensive.
While random-access memory was plentiful at the end of the past century, computational power
was scarce. Second, datasets were relatively small. In fact, Fisher s̓ Iris dataset from 1932 was a
popular tool for testing the efficacy of algorithms. The MNIST dataset with its 60000 handwritten
digits was considered huge.

Given the scarcity of data and computation, strong statistical tools such as kernel methods, deci-
sion trees and graphical models proved empirically superior. Unlike neural networks, they did
not require weeks to train and provided predictable results with strong theoretical guarantees.

21 https://en.wikipedia.org/wiki/Ronald_Fisher
22 https://en.wikipedia.org/wiki/Claude_Shannon
23 https://en.wikipedia.org/wiki/Alan_Turing
24 https://en.wikipedia.org/wiki/Donald_O._Hebb
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1.5 The Road to Deep Learning

Much of this changed with the ready availability of large amounts of data, due to the World Wide
Web, the advent of companies serving hundreds of millions of users online, a dissemination of
cheap, high-quality sensors, cheap data storage (Kryder s̓ law), and cheap computation (Moore s̓
law), in particular in the form of GPUs, originally engineered for computer gaming. Suddenly
algorithms andmodels that seemed computationally infeasible became relevant (and vice versa).
This is best illustrated in Table 1.5.1.

Table 1.5.1: Dataset vs. computer memory and computa-
tional power

Decade Dataset Memory Floating point calculations per second
1970 100 (Iris) 1 KB 100 KF (Intel 8080)
1980 1 K (House prices in Boston) 100 KB 1 MF (Intel 80186)
1990 10 K (optical character recognition) 10 MB 10 MF (Intel 80486)
2000 10 M (web pages) 100 MB 1 GF (Intel Core)
2010 10 G (advertising) 1 GB 1 TF (Nvidia C2050)
2020 1 T (social network) 100 GB 1 PF (Nvidia DGX-2)

It is evident that random-access memory has not kept pace with the growth in data. At the same
time, the increase in computational power has outpaced that of the data available. Thismeans that
statisticalmodels need to becomemorememory efficient (this is typically achievedby addingnon-
linearities) while simultaneously being able to spend more time on optimizing these parameters,
due to an increased computational budget. Consequently, the sweet spot inmachine learning and
statistics moved from (generalized) linear models and kernel methods to deep neural networks.
This is also one of the reasons why many of the mainstays of deep learning, such as multilayer
perceptrons (McCulloch & Pitts, 1943), convolutional neural networks (LeCun et al., 1998), long
short-termmemory (Hochreiter & Schmidhuber, 1997), and Q-Learning (Watkins & Dayan, 1992),
were essentially “rediscovered” in the past decade, after laying comparatively dormant for con-
siderable time.

The recent progress in statistical models, applications, and algorithms has sometimes been
likened to the Cambrian explosion: a moment of rapid progress in the evolution of species. In-
deed, the state of the art is not just a mere consequence of available resources, applied to decades
old algorithms. Note that the list below barely scratches the surface of the ideas that have helped
researchers achieve tremendous progress over the past decade.

• Novel methods for capacity control, such as dropout (Srivastava et al., 2014), have helped to
mitigate the danger of overfitting. This was achieved by applying noise injection (Bishop,
1995) throughout the neural network, replacing weights by random variables for training
purposes.

• Attention mechanisms solved a second problem that had plagued statistics for over a cen-
tury: how to increase the memory and complexity of a system without increasing the num-
ber of learnable parameters. Researchers found an elegant solution by using what can only
be viewed as a learnable pointer structure (Bahdanau et al., 2014). Rather than having to
remember an entire text sequence, e.g., for machine translation in a fixed-dimensional rep-
resentation, all that needed to be stored was a pointer to the intermediate state of the trans-
lation process. This allowed for significantly increased accuracy for long sequences, since
the model no longer needed to remember the entire sequence before commencing the gen-
eration of a new sequence.
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• Multi-stage designs, e.g., via the memory networks (Sukhbaatar et al., 2015) and the neural
programmer-interpreter (Reed & DeFreitas, 2015) allowed statistical modelers to describe
iterative approaches to reasoning. These tools allow for an internal state of the deep neural
network to be modified repeatedly, thus carrying out subsequent steps in a chain of reason-
ing, similar to how a processor can modify memory for a computation.

• Another key development was the invention of generative adversarial networks (Goodfellow
et al., 2014). Traditionally, statistical methods for density estimation and generative models
focused on finding proper probability distributions and (often approximate) algorithms for
sampling from them. As a result, these algorithms were largely limited by the lack of flex-
ibility inherent in the statistical models. The crucial innovation in generative adversarial
networks was to replace the sampler by an arbitrary algorithm with differentiable parame-
ters. These are then adjusted in such a way that the discriminator (effectively a two-sample
test) cannot distinguish fake from real data. Through the ability to use arbitrary algorithms
to generate data, it opened up density estimation to a wide variety of techniques. Examples
of galloping Zebras (Zhu et al., 2017) and of fake celebrity faces (Karras et al., 2017) are both
testimony to this progress. Even amateur doodlers can produce photorealistic images based
on just sketches that describe how the layout of a scene looks like (Park et al., 2019).

• In many cases, a single GPU is insufficient to process the large amounts of data available
for training. Over the past decade the ability to build parallel and distributed training al-
gorithms has improved significantly. One of the key challenges in designing scalable algo-
rithms is that the workhorse of deep learning optimization, stochastic gradient descent, re-
lies on relatively small minibatches of data to be processed. At the same time, small batches
limit the efficiency of GPUs. Hence, training on 1024 GPUs with a minibatch size of, say 32
images per batch amounts to an aggregate minibatch of about 32000 images. Recent work,
first byLi (Li, 2017), and subsequently by (You et al., 2017) and (Jia et al., 2018) pushed the size
up to 64000 observations, reducing training time for the ResNet-50 model on the ImageNet
dataset to less than 7 minutes. For comparison—initially training times were measured in
the order of days.

• The ability to parallelize computation has also contributed quite crucially to progress in re-
inforcement learning, at least whenever simulation is an option. This has led to significant
progress in computers achieving superhuman performance in Go, Atari games, Starcraft,
and in physics simulations (e.g., using MuJoCo). See e.g., (Silver et al., 2016) for a descrip-
tion of how to achieve this in AlphaGo. In a nutshell, reinforcement learning works best if
plenty of (state, action, reward) triples are available, i.e., whenever it is possible to try out
lots of things to learn how they relate to each other. Simulation provides such an avenue.

• Deep learning frameworks have played a crucial role in disseminating ideas. The first
generation of frameworks allowing for easy modeling encompassed Caffe25, Torch26, and
Theano27. Many seminal papers were written using these tools. By now, they have been su-
perseded by TensorFlow28 (often used via its high level API Keras29), CNTK30, Caffe 231, and
Apache MXNet32. The third generation of tools, namely imperative tools for deep learning,
was arguably spearheaded by Chainer33, which used a syntax similar to Python NumPy to

25 https://github.com/BVLC/caffe
26 https://github.com/torch
27 https://github.com/Theano/Theano
28 https://github.com/tensorflow/tensorflow
29 https://github.com/keras-team/keras
30 https://github.com/Microsoft/CNTK
31 https://github.com/caffe2/caffe2
32 https://github.com/apache/incubator-mxnet
33 https://github.com/chainer/chainer
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describe models. This idea was adopted by both PyTorch34, the Gluon API35 of MXNet, and
Jax36.

The division of labor between system researchers building better tools and statistical modelers
building better neural networks has greatly simplified things. For instance, training a linear lo-
gistic regressionmodel used to be a nontrivial homework problem, worthy to give to newmachine
learning Ph.D. students at Carnegie Mellon University in 2014. By now, this task can be accom-
plished with less than 10 lines of code, putting it firmly into the grasp of programmers.

1.6 Success Stories

AI has a long history of delivering results that would be difficult to accomplish otherwise. For in-
stance, themail sorting systems using optical character recognition have been deployed since the
1990s. This is, after all, the source of the famous MNIST dataset of handwritten digits. The same
applies to reading checks for bank deposits and scoring creditworthiness of applicants. Financial
transactions are checked for fraud automatically. This forms the backbone of many e-commerce
payment systems, such as PayPal, Stripe, AliPay,WeChat, Apple, Visa, andMasterCard. Computer
programs for chess have been competitive for decades. Machine learning feeds search, recom-
mendation, personalization, and ranking on the Internet. In other words, machine learning is
pervasive, albeit often hidden from sight.

It is only recently that AI has been in the limelight, mostly due to solutions to problems that were
considered intractable previously and that are directly related to consumers. Many of such ad-
vances are attributed to deep learning.

• Intelligent assistants, such as Apple s̓ Siri, Amazons̓ Alexa, and Google s̓ assistant, are able to
answer spoken questions with a reasonable degree of accuracy. This includes menial tasks
such as turning on light switches (a boon to the disabled) up to making barber s̓ appoint-
ments and offering phone support dialog. This is likely the most noticeable sign that AI is
affecting our lives.

• A key ingredient in digital assistants is the ability to recognize speech accurately. Gradually
the accuracy of such systems has increased to the point where they reach human parity for
certain applications (Xiong et al., 2018).

• Object recognition likewise has come a long way. Estimating the object in a picture was a
fairly challenging task in 2010. On the ImageNet benchmark researchers from NEC Labs
and University of Illinois at Urbana-Champaign achieved a top-5 error rate of 28% (Lin et
al., 2010). By 2017, this error rate was reduced to 2.25% (Hu et al., 2018). Similarly, stunning
results have been achieved for identifying birds or diagnosing skin cancer.

• Games used to be a bastion of human intelligence. Starting from TD-Gammon, a program
for playing backgammon using temporal difference reinforcement learning, algorithmic
and computational progress has led to algorithms for a wide range of applications. Unlike
backgammon, chess has amuchmore complex state space and set of actions. DeepBlue beat
Garry Kasparov using massive parallelism, special-purpose hardware and efficient search
through the game tree (Campbell et al., 2002). Go is more difficult still, due to its huge state
space. AlphaGo reached human parity in 2015, using deep learning combined with Monte
Carlo tree sampling (Silver et al., 2016). The challenge in Poker was that the state space is

34 https://github.com/pytorch/pytorch
35 https://github.com/apache/incubator-mxnet
36 https://github.com/google/jax
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large and it is not fully observed (we do not know the opponentsʼ cards). Libratus exceeded
human performance in Poker using efficiently structured strategies (Brown & Sandholm,
2017). This illustrates the impressive progress in games and the fact that advanced algo-
rithms played a crucial part in them.

• Another indication of progress in AI is the advent of self-driving cars and trucks. While
full autonomy is not quite within reach yet, excellent progress has been made in this direc-
tion, with companies such as Tesla, NVIDIA, and Waymo shipping products that enable at
least partial autonomy. What makes full autonomy so challenging is that proper driving re-
quires the ability to perceive, to reason and to incorporate rules into a system. At present,
deep learning is used primarily in the computer vision aspect of these problems. The rest is
heavily tuned by engineers.

Again, the above list barely scratches the surface of where machine learning has impacted prac-
tical applications. For instance, robotics, logistics, computational biology, particle physics, and
astronomy owe some of their most impressive recent advances at least in parts to machine learn-
ing. Machine learning is thus becoming a ubiquitous tool for engineers and scientists.

Frequently, the question of the AI apocalypse, or the AI singularity has been raised in non-
technical articles on AI. The fear is that somehowmachine learning systemswill become sentient
and decide independently from their programmers (and masters) about things that directly af-
fect the livelihood of humans. To some extent, AI already affects the livelihood of humans in an
immediate way: creditworthiness is assessed automatically, autopilots mostly navigate vehicles,
decisions about whether to grant bail use statistical data as input. More frivolously, we can ask
Alexa to switch on the coffee machine.

Fortunately, we are far from a sentient AI system that is ready to manipulate its human creators
(or burn their coffee). First, AI systems are engineered, trained and deployed in a specific, goal-
oriented manner. While their behavior might give the illusion of general intelligence, it is a com-
bination of rules, heuristics and statistical models that underlie the design. Second, at present
tools for artificial general intelligence simply do not exist that are able to improve themselves, rea-
son about themselves, and that are able to modify, extend, and improve their own architecture
while trying to solve general tasks.

A much more pressing concern is how AI is being used in our daily lives. It is likely that many
menial tasks fulfilled by truck drivers and shop assistants can andwill be automated. Farm robots
will likely reduce the cost for organic farming but they will also automate harvesting operations.
This phase of the industrial revolution may have profound consequences on large swaths of soci-
ety, since truck drivers and shop assistants are some of themost common jobs inmany countries.
Furthermore, statistical models, when applied without care can lead to racial, gender, or age bias
and raise reasonable concerns about procedural fairness if automated to drive consequential de-
cisions. It is important to ensure that these algorithms are used with care. With what we know
today, this strikes us a much more pressing concern than the potential of malevolent superintel-
ligence to destroy humanity.
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1.7 Characteristics

Thus far, we have talked about machine learning broadly, which is both a branch of AI and an ap-
proach to AI. Though deep learning is a subset ofmachine learning, the dizzying set of algorithms
and applications makes it difficult to assess what specifically the ingredients for deep learning
might be. This is as difficult as trying to pin down required ingredients for pizza since almost
every component is substitutable.

As we have described, machine learning can use data to learn transformations between inputs
and outputs, such as transforming audio into text in speech recognition. In doing so, it is often
necessary to represent data in a way suitable for algorithms to transform such representations
into the output. Deep learning is deep in precisely the sense that its models learn many layers of
transformations, where each layer offers the representation at one level. For example, layers near
the inputmay represent low-level details of the data, while layers closer to the classification output
may represent more abstract concepts used for discrimination. Since representation learning aims
at finding the representation itself, deep learning can be referred to as multi-level representation
learning.

The problems that we have discussed so far, such as learning from the raw audio signal, the raw
pixel values of images, or mapping between sentences of arbitrary lengths and their counterparts
in foreign languages, are those where deep learning excels and where traditional machine learn-
ing methods falter. It turns out that these many-layered models are capable of addressing low-
level perceptual data in a way that previous tools could not. Arguably the most significant com-
monality indeep learningmethods is theuse of end-to-end training. That is, rather thanassembling
a system based on components that are individually tuned, one builds the system and then tunes
their performance jointly. For instance, in computer vision scientists used to separate the process
of feature engineering from the process of building machine learning models. The Canny edge de-
tector (Canny, 1987) and Lowe s̓ SIFT feature extractor (Lowe, 2004) reigned supreme for over a
decade as algorithms for mapping images into feature vectors. In bygone days, the crucial part of
applying machine learning to these problems consisted of coming up with manually-engineered
ways of transforming the data into some form amenable to shallow models. Unfortunately, there
is only so little that humans can accomplish by ingenuity in comparison with a consistent eval-
uation over millions of choices carried out automatically by an algorithm. When deep learning
took over, these feature extractors were replaced by automatically tuned filters, yielding superior
accuracy.

Thus, one key advantage of deep learning is that it replaces not only the shallow models at the
end of traditional learning pipelines, but also the labor-intensive process of feature engineering.
Moreover, by replacingmuch of the domain-specific preprocessing, deep learning has eliminated
many of the boundaries that previously separated computer vision, speech recognition, natural
language processing, medical informatics, and other application areas, offering a unified set of
tools for tackling diverse problems.

Beyond end-to-end training, we are experiencing a transition from parametric statistical descrip-
tions to fully nonparametric models. When data are scarce, one needs to rely on simplifying as-
sumptions about reality in order to obtain useful models. When data are abundant, this can be
replaced by nonparametric models that fit reality more accurately. To some extent, this mirrors
the progress that physics experienced in the middle of the previous century with the availability
of computers. Rather than solving parametric approximations of how electrons behave by hand,
one can now resort to numerical simulations of the associated partial differential equations. This
has led to much more accurate models, albeit often at the expense of explainability.

Another difference to previous work is the acceptance of suboptimal solutions, dealing with non-
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convex nonlinear optimization problems, and the willingness to try things before proving them.
This newfound empiricism in dealing with statistical problems, combined with a rapid influx of
talent has led to rapid progress of practical algorithms, albeit in many cases at the expense of
modifying and re-inventing tools that existed for decades.

In the end, the deep learning community prides itself on sharing tools across academic and cor-
porate boundaries, releasingmany excellent libraries, statistical models, and trained networks as
open source. It is in this spirit that the notebooks forming this book are freely available for distri-
bution and use. We have worked hard to lower the barriers of access for everyone to learn about
deep learning and we hope that our readers will benefit from this.

Summary

• Machine learning studies how computer systems can leverage experience (often data) to
improve performance at specific tasks. It combines ideas from statistics, data mining, and
optimization. Often, it is used as a means of implementing AI solutions.

• As a class of machine learning, representational learning focuses on how to automatically
find the appropriate way to represent data. Deep learning is multi-level representation
learning through learning many layers of transformations.

• Deep learning replaces not only the shallowmodels at the end of traditional machine learn-
ing pipelines, but also the labor-intensive process of feature engineering.

• Much of the recent progress in deep learning has been triggered by an abundance of data
arising from cheap sensors and Internet-scale applications, and by significant progress in
computation, mostly through GPUs.

• Whole system optimization is a key component in obtaining high performance. The avail-
ability of efficient deep learning frameworks has made design and implementation of this
significantly easier.

Exercises

1. Which parts of code that you are currently writing could be “learned”, i.e., improved by
learning and automatically determining design choices that are made in your code? Does
your code include heuristic design choices?

2. Which problems that you encounter havemany examples for how to solve them, yet no spe-
cific way to automate them? These may be prime candidates for using deep learning.

3. Viewing the development of AI as a new industrial revolution, what is the relationship be-
tween algorithms and data? Is it similar to steam engines and coal? What is the fundamental
difference?

4. Where else can you apply the end-to-end training approach, such as in Fig. 1.1.2, physics,
engineering, and econometrics?

Discussions37

37 https://discuss.d2l.ai/t/22
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2 | Preliminaries

To get started with deep learning, we will need to develop a few basic skills. All machine learning
is concerned with extracting information from data. So we will begin by learning the practical
skills for storing, manipulating, and preprocessing data.

Moreover, machine learning typically requires working with large datasets, which we can think
of as tables, where the rows correspond to examples and the columns correspond to attributes.
Linear algebra gives us a powerful set of techniques for working with tabular data. We will not go
too far into theweeds but rather focus on the basic ofmatrix operations and their implementation.

Additionally, deep learning is all about optimization. We have amodel with some parameters and
we want to find those that fit our data the best. Determining which way to move each parameter at
each step of an algorithm requires a little bit of calculus, which will be briefly introduced. Fortu-
nately, the autograd package automatically computes differentiation for us, and we will cover it
next.

Next,machine learning is concernedwithmaking predictions: what is the likely value of someun-
known attribute, given the information that we observe? To reason rigorously under uncertainty
we will need to invoke the language of probability.

In the end, the official documentation provides plenty of descriptions and examples that are be-
yond this book. To conclude the chapter, we will show you how to look up documentation for the
needed information.

This book has kept the mathematical content to the minimum necessary to get a proper under-
standing of deep learning. However, it does not mean that this book is mathematics free. Thus,
this chapter provides a rapid introduction to basic and frequently-usedmathematics to allow any-
one to understand at leastmost of themathematical content of the book. If youwish to understand
all of the mathematical content, further reviewing the online appendix on mathematics38 should
be sufficient.

2.1 Data Manipulation

In order to get anything done, we need some way to store and manipulate data. Generally, there
are two important thingsweneed to dowith data: (i) acquire them; and (ii) process themonce they
are inside the computer. There is no point in acquiring data without some way to store it, so let us
get our hands dirty first by playing with synthetic data. To start, we introduce the n-dimensional
array, which is also called the tensor.

If you have worked with NumPy, the most widely-used scientific computing package in Python,
then you will find this section familiar. No matter which framework you use, its tensor class

38 https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/index.html
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(ndarray in MXNet, Tensor in both PyTorch and TensorFlow) is similar to NumPy s̓ ndarray with
a few killer features. First, GPU is well-supported to accelerate the computation whereas NumPy
only supports CPU computation. Second, the tensor class supports automatic differentiation.
These properties make the tensor class suitable for deep learning. Throughout the book, when
we say tensors, we are referring to instances of the tensor class unless otherwise stated.

2.1.1 Getting Started

In this section, we aim to get you up and running, equipping you with the basic math and numer-
ical computing tools that you will build on as you progress through the book. Do not worry if you
struggle to grok some of the mathematical concepts or library functions. The following sections
will revisit thismaterial in the context of practical examples and it will sink in. On the other hand,
if you already have some background and want to go deeper into the mathematical content, just
skip this section.

To start, we import the np (numpy) and npx (numpy_extension) modules from MXNet. Here, the np
module includes functions supportedbyNumPy,while the npxmodule contains a set of extensions
developed to empower deep learning within a NumPy-like environment. When using tensors, we
almost always invoke the set_np function: this is for compatibility of tensor processing by other
components of MXNet.

from mxnet import np, npx

npx.set_np()

A tensor represents a (possibly multi-dimensional) array of numerical values. With one axis, a
tensor corresponds (inmath) to a vector. With two axes, a tensor corresponds to amatrix. Tensors
with more than two axes do not have special mathematical names.

To start, we can use arange to create a row vector x containing the first 12 integers starting with 0,
though they are created as floats by default. Each of the values in a tensor is called an element of
the tensor. For instance, there are 12 elements in the tensor x. Unless otherwise specified, a new
tensor will be stored in main memory and designated for CPU-based computation.

x = np.arange(12)
x

array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.])

We can access a tensor s̓ shape (the length along each axis) by inspecting its shape property.

x.shape

(12,)

If we just want to know the total number of elements in a tensor, i.e., the product of all of the shape
elements, we can inspect its size. Because we are dealing with a vector here, the single element
of its shape is identical to its size.

x.size
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12

To change the shape of a tensor without altering either the number of elements or their values, we
can invoke the reshape function. For example, we can transform our tensor, x, from a row vector
with shape (12,) to a matrix with shape (3, 4). This new tensor contains the exact same values, but
views them as a matrix organized as 3 rows and 4 columns. To reiterate, although the shape has
changed, the elements have not. Note that the size is unaltered by reshaping.

X = x.reshape(3, 4)
X

array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])

Reshaping by manually specifying every dimension is unnecessary. If our target shape is a ma-
trix with shape (height, width), then after we know the width, the height is given implicitly. Why
should we have to perform the division ourselves? In the example above, to get a matrix with 3
rows, we specified both that it should have 3 rows and 4 columns. Fortunately, tensors can au-
tomatically work out one dimension given the rest. We invoke this capability by placing -1 for
the dimension that we would like tensors to automatically infer. In our case, instead of calling
x.reshape(3, 4), we could have equivalently called x.reshape(-1, 4) or x.reshape(3, -1).

Typically, we will want our matrices initialized either with zeros, ones, some other constants, or
numbers randomly sampled from a specific distribution. We can create a tensor representing a
tensor with all elements set to 0 and a shape of (2, 3, 4) as follows:

np.zeros((2, 3, 4))

array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],

[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])

Similarly, we can create tensors with each element set to 1 as follows:

np.ones((2, 3, 4))

array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],

[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])

Often, wewant to randomly sample the values for each element in a tensor from some probability
distribution. For example, when we construct arrays to serve as parameters in a neural network,
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wewill typically initialize their values randomly. The following snippet creates a tensorwith shape
(3, 4). Each of its elements is randomly sampled from a standard Gaussian (normal) distribution
with a mean of 0 and a standard deviation of 1.

np.random.normal(0, 1, size=(3, 4))

array([[ 2.2122064 , 1.1630787 , 0.7740038 , 0.4838046 ],
[ 1.0434405 , 0.29956347, 1.1839255 , 0.15302546],
[ 1.8917114 , -1.1688148 , -1.2347414 , 1.5580711 ]])

We can also specify the exact values for each element in the desired tensor by supplying a Python
list (or list of lists) containing the numerical values. Here, the outermost list corresponds to axis
0, and the inner list to axis 1.

np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])

array([[2., 1., 4., 3.],
[1., 2., 3., 4.],
[4., 3., 2., 1.]])

2.1.2 Operations

This book is not about software engineering. Our interests are not limited to simply reading and
writing data from/to arrays. We want to performmathematical operations on those arrays. Some
of the simplest and most useful operations are the elementwise operations. These apply a stan-
dard scalar operation to each element of an array. For functions that take two arrays as inputs,
elementwise operations apply some standard binary operator on each pair of corresponding ele-
ments from the two arrays. We can create an elementwise function from any function that maps
from a scalar to a scalar.

Inmathematical notation, wewould denote such a unary scalar operator (taking one input) by the
signature f : R→ R. This just means that the function is mapping from any real number (R) onto
another. Likewise, we denote a binary scalar operator (taking two real inputs, and yielding one
output) by the signature f : R,R→ R. Given any two vectorsu and v of the same shape, and a binary
operator f , we can produce a vector c = F (u, v) by setting ci ← f(ui, vi) for all i, where ci, ui, and
vi are the ith elements of vectors c,u, and v. Here, we produced the vector-valued F : Rd,Rd → Rd

by lifting the scalar function to an elementwise vector operation.

The common standard arithmetic operators (+, -, *, /, and **) have all been lifted to element-
wise operations for any identically-shaped tensors of arbitrary shape. We can call elementwise
operations on any two tensors of the same shape. In the following example, we use commas to
formulate a 5-element tuple, where each element is the result of an elementwise operation.
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Operations

The common standard arithmetic operators (+, -, *, /, and **) have all been lifted to elementwise
operations.

x = np.array([1, 2, 4, 8])
y = np.array([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x**y # The ** operator is exponentiation

(array([ 3., 4., 6., 10.]),
array([-1., 0., 2., 6.]),
array([ 2., 4., 8., 16.]),
array([0.5, 1. , 2. , 4. ]),
array([ 1., 4., 16., 64.]))

Many more operations can be applied elementwise, including unary operators like exponentia-
tion.

np.exp(x)

array([2.7182817e+00, 7.3890562e+00, 5.4598148e+01, 2.9809580e+03])

In addition to elementwise computations, we can also perform linear algebra operations, includ-
ing vector dot products andmatrixmultiplication. Wewill explain the crucial bits of linear algebra
(with no assumed prior knowledge) in Section 2.3.

We can also concatenate multiple tensors together, stacking them end-to-end to form a larger ten-
sor. We just need to provide a list of tensors and tell the system along which axis to concatenate.
The example below shows what happens when we concatenate two matrices along rows (axis 0,
the first element of the shape) vs. columns (axis 1, the second element of the shape). We can see
that the first output tensor s̓ axis-0 length (6) is the sum of the two input tensorsʼ axis-0 lengths
(3+3); while the second output tensor s̓ axis-1 length (8) is the sum of the two input tensorsʼ axis-1
lengths (4 + 4).

X = np.arange(12).reshape(3, 4)
Y = np.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
np.concatenate([X, Y], axis=0), np.concatenate([X, Y], axis=1)

(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[ 2., 1., 4., 3.],
[ 1., 2., 3., 4.],
[ 4., 3., 2., 1.]]),

array([[ 0., 1., 2., 3., 2., 1., 4., 3.],
[ 4., 5., 6., 7., 1., 2., 3., 4.],
[ 8., 9., 10., 11., 4., 3., 2., 1.]]))

Sometimes, wewant to construct a binary tensor via logical statements. Take X == Y as an example.
For each position, if X and Y are equal at that position, the corresponding entry in the new tensor
takes a value of 1, meaning that the logical statement X == Y is true at that position; otherwise that
position takes 0.
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X == Y

array([[False, True, False, True],
[False, False, False, False],
[False, False, False, False]])

Summing all the elements in the tensor yields a tensor with only one element.

X.sum()

array(66.)

2.1.3 Broadcasting Mechanism

In the above section, we saw how to perform elementwise operations on two tensors of the same
shape. Under certain conditions, even when shapes differ, we can still perform elementwise op-
erations by invoking the broadcasting mechanism. This mechanism works in the following way:
First, expand one or both arrays by copying elements appropriately so that after this transforma-
tion, the two tensors have the same shape. Second, carry out the elementwise operations on the
resulting arrays.

Inmost cases, we broadcast along an axis where an array initially only has length 1, such as in the
following example:

a = np.arange(3).reshape(3, 1)
b = np.arange(2).reshape(1, 2)
a, b

(array([[0.],
[1.],
[2.]]),

array([[0., 1.]]))

Since a and b are 3 × 1 and 1 × 2 matrices respectively, their shapes do not match up if we want
to add them. We broadcast the entries of both matrices into a larger 3 × 2 matrix as follows: for
matrix a it replicates the columns and for matrix b it replicates the rows before adding up both
elementwise.

a + b

array([[0., 1.],
[1., 2.],
[2., 3.]])
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2.1.4 Indexing and Slicing

Just as in any other Python array, elements in a tensor can be accessed by index. As in any Python
array, the first element has index 0 and ranges are specified to include the first but before the last
element. As in standard Python lists, we can access elements according to their relative position
to the end of the list by using negative indices.

Thus, [-1] selects the last element and [1:3] selects the second and the third elements as follows:

X[-1], X[1:3]

(array([ 8., 9., 10., 11.]),
array([[ 4., 5., 6., 7.],

[ 8., 9., 10., 11.]]))

Beyond reading, we can also write elements of a matrix by specifying indices.

X[1, 2] = 9
X

array([[ 0., 1., 2., 3.],
[ 4., 5., 9., 7.],
[ 8., 9., 10., 11.]])

If wewant to assignmultiple elements the same value, we simply index all of themand then assign
them the value. For instance, [0:2, :] accesses the first and second rows, where : takes all the
elements along axis 1 (column). While we discussed indexing for matrices, this obviously also
works for vectors and for tensors of more than 2 dimensions.

X[0:2, :] = 12
X

array([[12., 12., 12., 12.],
[12., 12., 12., 12.],
[ 8., 9., 10., 11.]])

2.1.5 Saving Memory

Running operations can cause new memory to be allocated to host results. For example, if we
write Y = X + Y, we will dereference the tensor that Y used to point to and instead point Y at
the newly allocated memory. In the following example, we demonstrate this with Pythons̓ id()
function, which gives us the exact address of the referenced object in memory. After running Y =
Y + X, wewill find that id(Y) points to a different location. That is because Python first evaluates Y
+ X, allocating newmemory for the result and thenmakes Y point to this new location inmemory.

before = id(Y)
Y = Y + X
id(Y) == before
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False

This might be undesirable for two reasons. First, we do not want to run around allocating mem-
ory unnecessarily all the time. In machine learning, we might have hundreds of megabytes of
parameters and update all of themmultiple times per second. Typically, we will want to perform
these updates in place. Second, we might point at the same parameters from multiple variables.
If we do not update in place, other references will still point to the old memory location, making
it possible for parts of our code to inadvertently reference stale parameters.

Fortunately, performing in-place operations is easy. We can assign the result of an operation to
a previously allocated array with slice notation, e.g., Y[:] = <expression>. To illustrate this
concept, we first create a new matrix Z with the same shape as another Y, using zeros_like to
allocate a block of 0 entries.

Z = np.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))

id(Z): 140221399309824
id(Z): 140221399309824

If the value of X is not reused in subsequent computations, we can also use X[:] = X + Y or X +=
Y to reduce the memory overhead of the operation.

before = id(X)
X += Y
id(X) == before

True

2.1.6 Conversion to Other Python Objects

Converting to a NumPy tensor, or vice versa, is easy. The converted result does not sharememory.
This minor inconvenience is actually quite important: when you perform operations on the CPU
or on GPUs, you do not want to halt computation, waiting to see whether the NumPy package of
Python might want to be doing something else with the same chunk of memory.

A = X.asnumpy()
B = np.array(A)
type(A), type(B)

(numpy.ndarray, mxnet.numpy.ndarray)

To convert a size-1 tensor to a Python scalar, we can invoke the item function or Pythons̓ built-in
functions.

a = np.array([3.5])
a, a.item(), float(a), int(a)

50 Chapter 2. Preliminaries



(array([3.5]), 3.5, 3.5, 3)

Summary

• The main interface to store and manipulate data for deep learning is the tensor (n-
dimensional array). It provides a variety of functionalities including basic mathematics op-
erations, broadcasting, indexing, slicing, memory saving, and conversion to other Python
objects.

Exercises

1. Run the code in this section. Change the conditional statement X == Y in this section to X <
Y or X > Y, and then see what kind of tensor you can get.

2. Replace the two tensors that operate by element in the broadcasting mechanism with other
shapes, e.g., 3-dimensional tensors. Is the result the same as expected?

Discussions39

2.2 Data Preprocessing

So far we have introduced a variety of techniques for manipulating data that are already stored in
tensors. To apply deep learning to solving real-world problems, we often begin with preprocess-
ing raw data, rather than those nicely prepared data in the tensor format. Among popular data
analytic tools in Python, the pandas package is commonly used. Like many other extension pack-
ages in the vast ecosystem of Python, pandas can work together with tensors. So, we will briefly
walk through steps for preprocessing raw data with pandas and converting them into the tensor
format. We will cover more data preprocessing techniques in later chapters.

2.2.1 Reading the Dataset

As an example, we begin by creating an artificial dataset that is stored in a csv (comma-separated
values) file ../data/house_tiny.csv. Data stored in other formats may be processed in similar
ways.

Below we write the dataset row by row into a csv file.

import os

os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:

f.write('NumRooms,Alley,Price\n') # Column names
f.write('NA,Pave,127500\n') # Each row represents a data example
f.write('2,NA,106000\n')
f.write('4,NA,178100\n')
f.write('NA,NA,140000\n')

39 https://discuss.d2l.ai/t/26
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To load the raw dataset from the created csv file, we import the pandas package and invoke the
read_csv function. This dataset has four rows and three columns, where each row describes the
number of rooms (“NumRooms”), the alley type (“Alley”), and the price (“Price”) of a house.

# If pandas is not installed, just uncomment the following line:
# !pip install pandas
import pandas as pd

data = pd.read_csv(data_file)
print(data)

NumRooms Alley Price
0 NaN Pave 127500
1 2.0 NaN 106000
2 4.0 NaN 178100
3 NaN NaN 140000

2.2.2 Handling Missing Data

Note that “NaN” entries are missing values. To handle missing data, typical methods include im-
putation and deletion, where imputation replacesmissing values with substituted ones, while dele-
tion ignores missing values. Here we will consider imputation.

By integer-location based indexing (iloc), we split data into inputs and outputs, where the former
takes the first two columns while the latter only keeps the last column. For numerical values in
inputs that are missing, we replace the “NaN” entries with the mean value of the same column.

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

NumRooms Alley
0 3.0 Pave
1 2.0 NaN
2 4.0 NaN
3 3.0 NaN

For categorical or discrete values in inputs, we consider “NaN” as a category. Since the “Alley”
column only takes two types of categorical values “Pave” and “NaN”, pandas can automatically
convert this column to two columns “Alley_Pave” and “Alley_nan”. A rowwhose alley type is “Pave”
will set values of “Alley_Pave” and “Alley_nan” to 1 and 0. A row with a missing alley type will set
their values to 0 and 1.

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

NumRooms Alley_Pave Alley_nan
0 3.0 1 0
1 2.0 0 1
2 4.0 0 1
3 3.0 0 1
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2.2.3 Conversion to the Tensor Format

Now that all the entries in inputs and outputs are numerical, they can be converted to the tensor
format. Once data are in this format, they can be furthermanipulated with those tensor function-
alities that we have introduced in Section 2.1.

from mxnet import np

X, y = np.array(inputs.values), np.array(outputs.values)
X, y

(array([[3., 1., 0.],
[2., 0., 1.],
[4., 0., 1.],
[3., 0., 1.]], dtype=float64),

array([127500, 106000, 178100, 140000], dtype=int64))

Summary

• Like many other extension packages in the vast ecosystem of Python, pandas can work to-
gether with tensors.

• Imputation and deletion can be used to handle missing data.

Exercises

Create a raw dataset with more rows and columns.

1. Delete the column with the most missing values.

2. Convert the preprocessed dataset to the tensor format.

Discussions40

2.3 Linear Algebra

Now that you can store andmanipulate data, let us briefly review the subset of basic linear algebra
that you will need to understand and implement most of models covered in this book. Below, we
introduce the basicmathematical objects, arithmetic, and operations in linear algebra, expressing
each of them through mathematical notation and the corresponding implementation in code.

40 https://discuss.d2l.ai/t/28
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2.3.1 Scalars

If you never studied linear algebra or machine learning, then your past experience with math
probably consisted of thinking about one number at a time. And, if you ever balanced a check-
book or even paid for dinner at a restaurant then you already know how to do basic things like
adding and multiplying pairs of numbers. For example, the temperature in Palo Alto is 52 de-
grees Fahrenheit. Formally, we call values consisting of just one numerical quantity scalars. If
you wanted to convert this value to Celsius (themetric systems̓ more sensible temperature scale),
you would evaluate the expression c = 5

9(f − 32), setting f to 52. In this equation, each of the
terms—5, 9, and 32—are scalar values. The placeholders c and f are called variables and they rep-
resent unknown scalar values.

In this book, we adopt the mathematical notation where scalar variables are denoted by ordinary
lower-cased letters (e.g., x, y, and z). We denote the space of all (continuous) real-valued scalars
by R. For expedience, we will punt on rigorous definitions of what precisely space is, but just
remember for now that the expression x ∈ R is a formal way to say that x is a real-valued scalar.
The symbol ∈ can be pronounced “in” and simply denotes membership in a set. Analogously, we
could write x, y ∈ {0, 1} to state that x and y are numbers whose value can only be 0 or 1.

A scalar is represented by a tensor with just one element. In the next snippet, we instantiate two
scalars and perform some familiar arithmetic operations with them, namely addition, multipli-
cation, division, and exponentiation.

from mxnet import np, npx

npx.set_np()

x = np.array(3.0)
y = np.array(2.0)

x + y, x * y, x / y, x**y

(array(5.), array(6.), array(1.5), array(9.))

2.3.2 Vectors

You can think of a vector as simply a list of scalar values. We call these values the elements (entries
or components) of the vector. When our vectors represent examples from our dataset, their values
hold some real-world significance. For example, ifwewere training amodel to predict the risk that
a loan defaults, we might associate each applicant with a vector whose components correspond
to their income, length of employment, number of previous defaults, and other factors. If we
were studying the risk of heart attacks hospital patients potentially face, wemight represent each
patient by a vector whose components capture their most recent vital signs, cholesterol levels,
minutes of exercise per day, etc. In math notation, we will usually denote vectors as bold-faced,
lower-cased letters (e.g., x, y, and z).

We work with vectors via one-dimensional tensors. In general tensors can have arbitrary lengths,
subject to the memory limits of your machine.

x = np.arange(4)
x
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array([0., 1., 2., 3.])

We can refer to any element of a vector by using a subscript. For example, we can refer to the ith

element of x by xi. Note that the element xi is a scalar, so we do not bold-face the font when refer-
ring to it. Extensive literature considers column vectors to be the default orientation of vectors,
so does this book. In math, a vector x can be written as

x =


x1
x2
...
xn

 , (2.3.1)

where x1, . . . , xn are elements of the vector. In code, we access any element by indexing into the
tensor.

x[3]

array(3.)

Length, Dimensionality, and Shape

Let us revisit some concepts from Section 2.1. A vector is just an array of numbers. And just as
every array has a length, so does every vector. In math notation, if we want to say that a vector x
consists ofn real-valued scalars, we can express this as x ∈ Rn. The length of a vector is commonly
called the dimension of the vector.

As with an ordinary Python array, we can access the length of a tensor by calling Pythons̓ built-in
len() function.

len(x)

4

When a tensor represents a vector (with precisely one axis), we can also access its length via the
.shape attribute. The shape is a tuple that lists the length (dimensionality) along each axis of the
tensor. For tensors with just one axis, the shape has just one element.

x.shape

(4,)

Note that theword “dimension” tends to get overloaded in these contexts and this tends to confuse
people. To clarify, we use the dimensionality of a vector or an axis to refer to its length, i.e., the
number of elements of a vector or an axis. However, we use the dimensionality of a tensor to refer
to the number of axes that a tensor has. In this sense, the dimensionality of some axis of a tensor
will be the length of that axis.
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2.3.3 Matrices

Just as vectors generalize scalars from order zero to order one, matrices generalize vectors from
order one to order two. Matrices, which we will typically denote with bold-faced, capital letters
(e.g., X, Y, and Z), are represented in code as tensors with two axes.

Inmath notation, we useA ∈ Rm×n to express that thematrixA consists ofm rows and n columns
of real-valued scalars. Visually, we can illustrate any matrix A ∈ Rm×n as a table, where each
element aij belongs to the ith row and jth column:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 . (2.3.2)

For any A ∈ Rm×n, the shape of A is (m, n) or m × n. Specifically, when a matrix has the same
number of rows and columns, its shape becomes a square; thus, it is called a square matrix.

We can create anm× nmatrix by specifying a shape with two componentsm and nwhen calling
any of our favorite functions for instantiating a tensor.

A = np.arange(20).reshape(5, 4)
A

array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]])

We can access the scalar element aij of a matrix A in (2.3.2) by specifying the indices for the row
(i) and column (j), such as [A]ij. When the scalar elements of amatrixA, such as in (2.3.2), are not
given, wemay simply use the lower-case letter of thematrixAwith the index subscript, aij, to refer
to [A]ij. To keep notation simple, commas are inserted to separate indices only when necessary,
such as a2,3j and [A]2i−1,3.

Sometimes, wewant to flip the axes. Whenwe exchange amatrix s̓ rows and columns, the result is
called the transpose of thematrix. Formally, we signify amatrixA s̓ transpose byA⊤ and ifB = A⊤,
then bij = aji for any i and j. Thus, the transpose of A in (2.3.2) is a n×mmatrix:

A⊤ =


a11 a21 . . . am1

a12 a22 . . . am2
...

... . . . ...
a1n a2n . . . amn

 . (2.3.3)

Now we access a matrix s̓ transpose in code.

A.T

array([[ 0., 4., 8., 12., 16.],
[ 1., 5., 9., 13., 17.],
[ 2., 6., 10., 14., 18.],
[ 3., 7., 11., 15., 19.]])
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As a special type of the squarematrix, a symmetric matrix A is equal to its transpose: A = A⊤. Here
we define a symmetric matrix B.

B = np.array([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B

array([[1., 2., 3.],
[2., 0., 4.],
[3., 4., 5.]])

Now we compare B with its transpose.

B == B.T

array([[ True, True, True],
[ True, True, True],
[ True, True, True]])

Matrices are useful data structures: they allow us to organize data that have different modalities
of variation. For example, rows in our matrix might correspond to different houses (data exam-
ples), while columns might correspond to different attributes. This should sound familiar if you
have ever used spreadsheet software or have read Section 2.2. Thus, although the default orienta-
tion of a single vector is a column vector, in a matrix that represents a tabular dataset, it is more
conventional to treat each data example as a row vector in the matrix. And, as we will see in later
chapters, this convention will enable common deep learning practices. For example, along the
outermost axis of a tensor, we can access or enumerateminibatches of data examples, or just data
examples if no minibatch exists.

2.3.4 Tensors

Just as vectors generalize scalars, and matrices generalize vectors, we can build data structures
with even more axes. Tensors (“tensors” in this subsection refer to algebraic objects) give us a
generic way of describing n-dimensional arrays with an arbitrary number of axes. Vectors, for
example, are first-order tensors, andmatrices are second-order tensors. Tensors are denotedwith
capital letters of a special font face (e.g., X, Y, and Z) and their indexing mechanism (e.g., xijk and
[X]1,2i−1,3) is similar to that of matrices.

Tensors will become more important when we start working with images, which arrive as n-
dimensional arrays with 3 axes corresponding to the height, width, and a channel axis for stacking
the color channels (red, green, and blue). For now, we will skip over higher order tensors and
focus on the basics.

X = np.arange(24).reshape(2, 3, 4)
X

array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]],

[[12., 13., 14., 15.],

(continues on next page)
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(continued from previous page)

[16., 17., 18., 19.],
[20., 21., 22., 23.]]])

2.3.5 Basic Properties of Tensor Arithmetic

Scalars, vectors,matrices, and tensors (“tensors” in this subsection refer to algebraic objects) of an
arbitrary number of axes have some nice properties that often come in handy. For example, you
might have noticed from the definition of an elementwise operation that any elementwise unary
operation does not change the shape of its operand. Similarly, given any two tensors with the
same shape, the result of any binary elementwise operation will be a tensor of that same shape.
For example, adding two matrices of the same shape performs elementwise addition over these
two matrices.

A = np.arange(20).reshape(5, 4)
B = A.copy() # Assign a copy of `A` to `B` by allocating new memory
A, A + B

(array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],
[16., 17., 18., 19.]]),

array([[ 0., 2., 4., 6.],
[ 8., 10., 12., 14.],
[16., 18., 20., 22.],
[24., 26., 28., 30.],
[32., 34., 36., 38.]]))

Specifically, elementwise multiplication of two matrices is called their Hadamard product (math
notation⊙). ConsidermatrixB ∈ Rm×nwhose element of row i andcolumn j is bij. TheHadamard
product of matrices A (defined in (2.3.2)) and B

A⊙ B =


a11b11 a12b12 . . . a1nb1n
a21b21 a22b22 . . . a2nb2n

...
... . . . ...

am1bm1 am2bm2 . . . amnbmn

 . (2.3.4)

A * B

array([[ 0., 1., 4., 9.],
[ 16., 25., 36., 49.],
[ 64., 81., 100., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]])

Multiplying or adding a tensor by a scalar also does not change the shape of the tensor, where each
element of the operand tensor will be added or multiplied by the scalar.
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a = 2
X = np.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(array([[[ 2., 3., 4., 5.],
[ 6., 7., 8., 9.],
[10., 11., 12., 13.]],

[[14., 15., 16., 17.],
[18., 19., 20., 21.],
[22., 23., 24., 25.]]]),

(2, 3, 4))

2.3.6 Reduction

One useful operation that we can perform with arbitrary tensors is to calculate the sum of their
elements. In mathematical notation, we express sums using the

∑
symbol. To express the sum

of the elements in a vector x of length d, we write
∑d

i=1 xi. In code, we can just call the function
for calculating the sum.

x = np.arange(4)
x, x.sum()

(array([0., 1., 2., 3.]), array(6.))

We can express sums over the elements of tensors of arbitrary shape. For example, the sum of the
elements of anm× nmatrix A could be written

∑m
i=1

∑n
j=1 aij.

A.shape, A.sum()

((5, 4), array(190.))

By default, invoking the function for calculating the sum reduces a tensor along all its axes to a
scalar. We can also specify the axes along which the tensor is reduced via summation. Take ma-
trices as an example. To reduce the row dimension (axis 0) by summing up elements of all the
rows, we specify axis=0 when invoking the function. Since the input matrix reduces along axis 0
to generate the output vector, the dimension of axis 0 of the input is lost in the output shape.

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

(array([40., 45., 50., 55.]), (4,))

Specifying axis=1 will reduce the column dimension (axis 1) by summing up elements of all the
columns. Thus, the dimension of axis 1 of the input is lost in the output shape.

A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
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(array([ 6., 22., 38., 54., 70.]), (5,))

Reducing a matrix along both rows and columns via summation is equivalent to summing up all
the elements of the matrix.

A.sum(axis=[0, 1]) # Same as `A.sum()`

array(190.)

A related quantity is themean, which is also called the average. We calculate the mean by dividing
the sum by the total number of elements. In code, we could just call the function for calculating
the mean on tensors of arbitrary shape.

A.mean(), A.sum() / A.size

(array(9.5), array(9.5))

Likewise, the function for calculating the mean can also reduce a tensor along the specified axes.

A.mean(axis=0), A.sum(axis=0) / A.shape[0]

(array([ 8., 9., 10., 11.]), array([ 8., 9., 10., 11.]))

Non-Reduction Sum

However, sometimes it can be useful to keep the number of axes unchanged when invoking the
function for calculating the sum or mean.

sum_A = A.sum(axis=1, keepdims=True)
sum_A

array([[ 6.],
[22.],
[38.],
[54.],
[70.]])

For instance, since sum_A still keeps its two axes after summing each row, we can divide A by sum_A
with broadcasting.

A / sum_A

array([[0. , 0.16666667, 0.33333334, 0.5 ],
[0.18181819, 0.22727273, 0.27272728, 0.3181818 ],
[0.21052632, 0.23684211, 0.2631579 , 0.28947368],
[0.22222222, 0.24074075, 0.25925925, 0.2777778 ],
[0.22857143, 0.24285714, 0.25714287, 0.27142859]])
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If we want to calculate the cumulative sum of elements of A along some axis, say axis=0 (row by
row), we can call the cumsum function. This function will not reduce the input tensor along any
axis.

A.cumsum(axis=0)

array([[ 0., 1., 2., 3.],
[ 4., 6., 8., 10.],
[12., 15., 18., 21.],
[24., 28., 32., 36.],
[40., 45., 50., 55.]])

2.3.7 Dot Products

So far, we have only performed elementwise operations, sums, and averages. And if this was all
we could do, linear algebra probably would not deserve its own section. However, one of themost
fundamental operations is the dot product. Given two vectors x, y ∈ Rd, their dot product x⊤y (or
⟨x, y⟩) is a sum over the products of the elements at the same position: x⊤y =

∑d
i=1 xiyi.

y = np.ones(4)
x, y, np.dot(x, y)

(array([0., 1., 2., 3.]), array([1., 1., 1., 1.]), array(6.))

Note that we can express the dot product of two vectors equivalently by performing an element-
wise multiplication and then a sum:

np.sum(x * y)

array(6.)

Dot products are useful in awide range of contexts. For example, given some set of values, denoted
by a vector x ∈ Rd and a set of weights denoted by w ∈ Rd, the weighted sum of the values in x
according to the weights w could be expressed as the dot product x⊤w. When the weights are
non-negative and sum to one (i.e.,

(∑d
i=1wi = 1

)
), the dot product expresses a weighted average.

After normalizing two vectors to have the unit length, the dot products express the cosine of the
angle between them. We will formally introduce this notion of length later in this section.

2.3.8 Matrix-Vector Products

Now that we know how to calculate dot products, we can begin to understand matrix-vector prod-
ucts. Recall thematrixA ∈ Rm×n and the vector x ∈ Rn defined and visualized in (2.3.2) and (2.3.1)
respectively. Let us start off by visualizing the matrix A in terms of its row vectors

A =


a⊤1
a⊤2
...
a⊤m

 , (2.3.5)
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where each a⊤i ∈ Rn is a row vector representing the ith row of the matrix A.

The matrix-vector product Ax is simply a column vector of lengthm, whose ith element is the dot
product a⊤i x:

Ax =


a⊤1
a⊤2
...
a⊤m

 x =


a⊤1 x
a⊤2 x
...

a⊤mx

 . (2.3.6)

We can think of multiplication by a matrix A ∈ Rm×n as a transformation that projects vectors
from Rn to Rm. These transformations turn out to be remarkably useful. For example, we can
represent rotations as multiplications by a square matrix. As we will see in subsequent chapters,
we can also usematrix-vector products to describe themost intensive calculations required when
computing each layer in a neural network given the values of the previous layer.

Expressing matrix-vector products in code with tensors, we use the same dot function as for dot
products. When we call np.dot(A, x)with a matrix A and a vector x, the matrix-vector product is
performed. Note that the column dimension of A (its length along axis 1) must be the same as the
dimension of x (its length).

A.shape, x.shape, np.dot(A, x)

((5, 4), (4,), array([ 14., 38., 62., 86., 110.]))

2.3.9 Matrix-Matrix Multiplication

If you have gotten the hang of dot products and matrix-vector products, thenmatrix-matrix multi-
plication should be straightforward.

Say that we have two matrices A ∈ Rn×k and B ∈ Rk×m:

A =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

... . . . ...
an1 an2 · · · ank

 , B =


b11 b12 · · · b1m
b21 b22 · · · b2m
...

... . . . ...
bk1 bk2 · · · bkm

 . (2.3.7)

Denote by a⊤i ∈ Rk the row vector representing the ith row of the matrix A, and let bj ∈ Rk be the
column vector from the jth column of the matrix B. To produce the matrix product C = AB, it is
easiest to think of A in terms of its row vectors and B in terms of its column vectors:

A =


a⊤1
a⊤2
...
a⊤n

 , B =
[
b1 b2 · · · bm

]
. (2.3.8)

Then the matrix product C ∈ Rn×m is produced as we simply compute each element cij as the dot
product a⊤i bj:

C = AB =


a⊤1
a⊤2
...
a⊤n

 [b1 b2 · · · bm

]
=


a⊤1 b1 a⊤1 b2 · · · a⊤1 bm

a⊤2 b1 a⊤2 b2 · · · a⊤2 bm
...

... . . . ...
a⊤nb1 a⊤nb2 · · · a⊤nbm

 . (2.3.9)
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We can think of the matrix-matrix multiplication AB as simply performingmmatrix-vector prod-
ucts and stitching the results together to form an n × m matrix. In the following snippet, we
performmatrix multiplication on A and B. Here, A is a matrix with 5 rows and 4 columns, and B is
a matrix with 4 rows and 3 columns. After multiplication, we obtain a matrix with 5 rows and 3
columns.

B = np.ones(shape=(4, 3))
np.dot(A, B)

array([[ 6., 6., 6.],
[22., 22., 22.],
[38., 38., 38.],
[54., 54., 54.],
[70., 70., 70.]])

Matrix-matrix multiplication can be simply called matrix multiplication, and should not be con-
fused with the Hadamard product.

2.3.10 Norms

Some of the most useful operators in linear algebra are norms. Informally, the norm of a vector
tells us how big a vector is. The notion of size under consideration here concerns not dimension-
ality but rather the magnitude of the components.

In linear algebra, a vector norm is a function f that maps a vector to a scalar, satisfying a handful
of properties. Given any vector x, the first property says that if we scale all the elements of a vector
by a constant factor α, its norm also scales by the absolute value of the same constant factor:

f(αx) = |α|f(x). (2.3.10)

The second property is the familiar triangle inequality:

f(x+ y) ≤ f(x) + f(y). (2.3.11)

The third property simply says that the normmust be non-negative:

f(x) ≥ 0. (2.3.12)

That makes sense, as in most contexts the smallest size for anything is 0. The final property re-
quires that the smallest norm is achieved and only achieved by a vector consisting of all zeros.

∀i, [x]i = 0⇔ f(x) = 0. (2.3.13)

Youmight notice that norms sounda lot likemeasures of distance. And if you rememberEuclidean
distances (think Pythagorasʼ theorem) from grade school, then the concepts of non-negativity and
the triangle inequality might ring a bell. In fact, the Euclidean distance is a norm: specifically it
is the L2 norm. Suppose that the elements in the n-dimensional vector x are x1, . . . , xn.

The L2 norm of x is the square root of the sum of the squares of the vector elements:

∥x∥2 =

√√√√ n∑
i=1

x2i , (2.3.14)

where the subscript 2 is often omitted in L2 norms, i.e., ∥x∥ is equivalent to ∥x∥2. In code, we can
calculate the L2 norm of a vector as follows.
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u = np.array([3, -4])
np.linalg.norm(u)

array(5.)

In deep learning, we work more often with the squared L2 norm.

You will also frequently encounter the L1 norm, which is expressed as the sum of the absolute
values of the vector elements:

∥x∥1 =
n∑

i=1

|xi| . (2.3.15)

As compared with the L2 norm, it is less influenced by outliers. To calculate the L1 norm, we
compose the absolute value function with a sum over the elements.

np.abs(u).sum()

array(7.)

Both the L2 norm and the L1 norm are special cases of the more general Lp norm:

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

. (2.3.16)

Analogous to L2 norms of vectors, the Frobenius norm of a matrix X ∈ Rm×n is the square root of
the sum of the squares of the matrix elements:

∥X∥F =

√√√√ m∑
i=1

n∑
j=1

x2ij . (2.3.17)

The Frobenius norm satisfies all the properties of vector norms. It behaves as if it were anL2 norm
of a matrix-shaped vector. Invoking the following function will calculate the Frobenius norm of a
matrix.

np.linalg.norm(np.ones((4, 9)))

array(6.)

Norms and Objectives

While we do not want to get too far ahead of ourselves, we can plant some intuition already about
why these concepts are useful. In deep learning, we are often trying to solve optimization prob-
lems: maximize the probability assigned to observed data; minimize the distance between pre-
dictions and the ground-truth observations. Assign vector representations to items (like words,
products, or news articles) such that the distance between similar items is minimized, and the
distance between dissimilar items is maximized. Oftentimes, the objectives, perhaps the most
important components of deep learning algorithms (besides the data), are expressed as norms.
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2.3.11 More on Linear Algebra

In just this section, we have taught you all the linear algebra that you will need to understand a
remarkable chunk of modern deep learning. There is a lot more to linear algebra and a lot of
that mathematics is useful for machine learning. For example, matrices can be decomposed into
factors, and these decompositions can reveal low-dimensional structure in real-world datasets.
There are entire subfields of machine learning that focus on using matrix decompositions and
their generalizations to high-order tensors to discover structure in datasets and solve prediction
problems. But this book focuses on deep learning. Andwe believe youwill bemuchmore inclined
to learnmoremathematics once youhave gotten yourhandsdirty deployingusefulmachine learn-
ing models on real datasets. So while we reserve the right to introduce more mathematics much
later on, we will wrap up this section here.

If you are eager to learn more about linear algebra, you may refer to either the online appendix
on linear algebraic operations41 or other excellent resources (Strang, 1993; Kolter, 2008; Petersen
et al., 2008).

Summary

• Scalars, vectors, matrices, and tensors are basic mathematical objects in linear algebra.

• Vectors generalize scalars, and matrices generalize vectors.

• Scalars, vectors, matrices, and tensors have zero, one, two, and an arbitrary number of axes,
respectively.

• A tensor can be reduced along the specified axes by sum and mean.

• Elementwisemultiplication of twomatrices is called their Hadamard product. It is different
frommatrix multiplication.

• In deep learning, we often work with norms such as the L1 norm, the L2 norm, and the
Frobenius norm.

• We can perform a variety of operations over scalars, vectors, matrices, and tensors.

Exercises

1. Prove that the transpose of a matrix A s̓ transpose is A: (A⊤)⊤ = A.

2. Given two matrices A and B, show that the sum of transposes is equal to the transpose of a
sum: A⊤ + B⊤ = (A+ B)⊤.

3. Given any square matrix A, is A+ A⊤ always symmetric? Why?

4. We defined the tensor X of shape (2, 3, 4) in this section. What is the output of len(X)?

5. For a tensor X of arbitrary shape, does len(X) always correspond to the length of a certain
axis of X? What is that axis?

6. Run A / A.sum(axis=1) and see what happens. Can you analyze the reason?

7. When traveling between twopoints inManhattan, what is the distance that youneed to cover
in terms of the coordinates, i.e., in terms of avenues and streets? Can you travel diagonally?

41 https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/geometry-linear-algebraic-ops.html
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8. Consider a tensor with shape (2, 3, 4). What are the shapes of the summation outputs along
axis 0, 1, and 2?

9. Feed a tensor with 3 or more axes to the linalg.norm function and observe its output. What
does this function compute for tensors of arbitrary shape?

Discussions42

2.4 Calculus

Finding the area of a polygon had remainedmysterious until at least 2,500 years ago, when ancient
Greeks divided a polygon into triangles and summed their areas. To find the area of curved shapes,
such as a circle, ancient Greeks inscribed polygons in such shapes. As shown in Fig. 2.4.1, an
inscribed polygon with more sides of equal length better approximates the circle. This process is
also known as the method of exhaustion.

Fig. 2.4.1: Find the area of a circle with the method of exhaustion.

In fact, themethod of exhaustion is where integral calculus (will be described in Section 18.5) orig-
inates from. More than 2,000 years later, the other branch of calculus, differential calculus, was
invented. Among the most critical applications of differential calculus, optimization problems
consider how to do something the best. As discussed in Section 2.3.10, such problems are ubiqui-
tous in deep learning.

In deep learning, we train models, updating them successively so that they get better and better
as they see more and more data. Usually, getting better means minimizing a loss function, a score
that answers the question “how bad is our model?” This question is more subtle than it appears.
Ultimately, whatwe really care about is producing amodel that performswell on data that we have
never seen before. But we can only fit the model to data that we can actually see. Thus we can
decompose the task of fitting models into two key concerns: i) optimization: the process of fitting
our models to observed data; ii) generalization: the mathematical principles and practitionersʼ
wisdom that guide as to how to produce models whose validity extends beyond the exact set of
data examples used to train them.

To help you understand optimization problems andmethods in later chapters, here we give a very
brief primer on differential calculus that is commonly used in deep learning.

42 https://discuss.d2l.ai/t/30

66 Chapter 2. Preliminaries



2.4.1 Derivatives and Differentiation

We begin by addressing the calculation of derivatives, a crucial step in nearly all deep learning
optimization algorithms. In deep learning, we typically choose loss functions that are differen-
tiable with respect to our model s̓ parameters. Put simply, this means that for each parameter,
we can determine how rapidly the loss would increase or decrease, were we to increase or decrease
that parameter by an infinitesimally small amount.

Suppose thatwehave a function f : R→ R, whose input andoutput are both scalars. The derivative
of f is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, (2.4.1)

if this limit exists. If f ′(a) exists, f is said to be differentiable at a. If f is differentiable at every
number of an interval, then this function is differentiable on this interval. We can interpret the
derivative f ′(x) in (2.4.1) as the instantaneous rate of change of f(x)with respect tox. The so-called
instantaneous rate of change is based on the variation h in x, which approaches 0.

To illustrate derivatives, let us experiment with an example. Define u = f(x) = 3x2 − 4x.

%matplotlib inline
from IPython import display
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

def f(x):
return 3 * x ** 2 - 4 * x

By setting x = 1 and letting h approach 0, the numerical result of f(x+h)−f(x)
h in (2.4.1) approaches

2. Though this experiment is not a mathematical proof, we will see later that the derivative u′ is 2
when x = 1.

def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h

h = 0.1
for i in range(5):

print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
h *= 0.1

h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

Let us familiarize ourselves with a few equivalent notations for derivatives. Given y = f(x), where
x and y are the independent variable and the dependent variable of the function f , respectively.
The following expressions are equivalent:

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x), (2.4.2)
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where symbols d
dx andD are differentiation operators that indicate operation of differentiation. We

can use the following rules to differentiate common functions:

• DC = 0 (C is a constant),

• Dxn = nxn−1 (the power rule, n is any real number),

• Dex = ex,

• D ln(x) = 1/x.

To differentiate a function that is formed from a few simpler functions such as the above com-
mon functions, the following rules can be handy for us. Suppose that functions f and g are both
differentiable and C is a constant, we have the constant multiple rule

d

dx
[Cf(x)] = C

d

dx
f(x), (2.4.3)

the sum rule

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x), (2.4.4)

the product rule

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)], (2.4.5)

and the quotient rule

d

dx

[
f(x)

g(x)

]
=

g(x) d
dx [f(x)]− f(x) d

dx [g(x)]

[g(x)]2
. (2.4.6)

Now we can apply a few of the above rules to find u′ = f ′(x) = 3 d
dxx

2 − 4 d
dxx = 6x − 4. Thus, by

setting x = 1, we have u′ = 2: this is supported by our earlier experiment in this section where
the numerical result approaches 2. This derivative is also the slope of the tangent line to the curve
u = f(x) when x = 1.

To visualize such an interpretation of derivatives, we will use matplotlib, a popular plotting li-
brary in Python. To configure properties of the figures produced by matplotlib, we need to define
a few functions. In the following, the use_svg_display function specifies the matplotlib package
to output the svg figures for sharper images. Note that the comment #@save is a special mark
where the following function, class, or statements are saved in the d2l package so later they can
be directly invoked (e.g., d2l.use_svg_display()) without being redefined.

def use_svg_display(): #@save
"""Use the svg format to display a plot in Jupyter."""
display.set_matplotlib_formats('svg')

We define the set_figsize function to specify the figure sizes. Note that here we directly use d2l.
plt since the import statement from matplotlib import pyplot as plt has been marked for
being saved in the d2l package in the preface.

def set_figsize(figsize=(3.5, 2.5)): #@save
"""Set the figure size for matplotlib."""
use_svg_display()
d2l.plt.rcParams['figure.figsize'] = figsize
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The following set_axes function sets properties of axes of figures produced by matplotlib.

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):

"""Set the axes for matplotlib."""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:

axes.legend(legend)
axes.grid()

With these three functions for figure configurations, we define the plot function to plot multiple
curves succinctly since we will need to visualize many curves throughout the book.

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,

ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):

"""Plot data points."""
if legend is None:

legend = []

set_figsize(figsize)
axes = axes if axes else d2l.plt.gca()

# Return True if `X` (tensor or list) has 1 axis
def has_one_axis(X):

return (hasattr(X, "ndim") and X.ndim == 1 or
isinstance(X, list) and not hasattr(X[0], "__len__"))

if has_one_axis(X):
X = [X]

if Y is None:
X, Y = [[]] * len(X), X

elif has_one_axis(Y):
Y = [Y]

if len(X) != len(Y):
X = X * len(Y)

axes.cla()
for x, y, fmt in zip(X, Y, fmts):

if len(x):
axes.plot(x, y, fmt)

else:
axes.plot(y, fmt)

set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

Nowwecanplot the functionu = f(x) and its tangent line y = 2x−3 atx = 1, where the coefficient
2 is the slope of the tangent line.

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])
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2.4.2 Partial Derivatives

So far we have dealt with the differentiation of functions of just one variable. In deep learning,
functions often depend onmany variables. Thus, we need to extend the ideas of differentiation to
these multivariate functions.

Let y = f(x1, x2, . . . , xn) be a function with n variables. The partial derivative of y with respect to
its ith parameter xi is

∂y

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
. (2.4.7)

To calculate ∂y
∂xi

, we can simply treatx1, . . . , xi−1, xi+1, . . . , xn as constants and calculate thederiva-
tive of y with respect to xi. For notation of partial derivatives, the following are equivalent:

∂y

∂xi
=

∂f

∂xi
= fxi = fi = Dif = Dxif. (2.4.8)

2.4.3 Gradients

We can concatenate partial derivatives of a multivariate function with respect to all its variables
to obtain the gradient vector of the function. Suppose that the input of function f : Rn → R is an
n-dimensional vector x = [x1, x2, . . . , xn]

⊤ and the output is a scalar. The gradient of the function
f(x) with respect to x is a vector of n partial derivatives:

∇xf(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

]⊤
, (2.4.9)

where∇xf(x) is often replaced by∇f(x) when there is no ambiguity.

Let x be an n-dimensional vector, the following rules are often used when differentiating multi-
variate functions:

• For all A ∈ Rm×n,∇xAx = A⊤,

• For all A ∈ Rn×m,∇xx⊤A = A,

• For all A ∈ Rn×n,∇xx⊤Ax = (A+ A⊤)x,

• ∇x∥x∥2 = ∇xx⊤x = 2x.
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Similarly, for any matrix X, we have ∇X∥X∥2F = 2X. As we will see later, gradients are useful for
designing optimization algorithms in deep learning.

2.4.4 Chain Rule

However, such gradients can be hard to find. This is becausemultivariate functions in deep learn-
ing are often composite, so wemay not apply any of the aforementioned rules to differentiate these
functions. Fortunately, the chain rule enables us to differentiate composite functions.

Let us first consider functions of a single variable. Suppose that functions y = f(u) and u = g(x)
are both differentiable, then the chain rule states that

dy

dx
=

dy

du

du

dx
. (2.4.10)

Now let us turn our attention to a more general scenario where functions have an arbitrary
number of variables. Suppose that the differentiable function y has variables u1, u2, . . . , um,
where each differentiable function ui has variables x1, x2, . . . , xn. Note that y is a function of
x1, x2, . . . , xn. Then the chain rule gives

dy

dxi
=

dy

du1

du1
dxi

+
dy

du2

du2
dxi

+ · · ·+ dy

dum

dum
dxi

(2.4.11)

for any i = 1, 2, . . . , n.

Summary

• Differential calculus and integral calculus are two branches of calculus, where the former
can be applied to the ubiquitous optimization problems in deep learning.

• A derivative can be interpreted as the instantaneous rate of change of a functionwith respect
to its variable. It is also the slope of the tangent line to the curve of the function.

• A gradient is a vectorwhose components are the partial derivatives of amultivariate function
with respect to all its variables.

• The chain rule enables us to differentiate composite functions.

Exercises

1. Plot the function y = f(x) = x3 − 1
x and its tangent line when x = 1.

2. Find the gradient of the function f(x) = 3x21 + 5ex2 .

3. What is the gradient of the function f(x) = ∥x∥2?

4. Can youwrite out the chain rule for the case where u = f(x, y, z) and x = x(a, b), y = y(a, b),
and z = z(a, b)?

Discussions43
43 https://discuss.d2l.ai/t/32
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2.5 Automatic Differentiation

As we have explained in Section 2.4, differentiation is a crucial step in nearly all deep learning
optimization algorithms. While the calculations for taking these derivatives are straightforward,
requiring only some basic calculus, for complex models, working out the updates by hand can be
a pain (and often error-prone).

Deep learning frameworks expedite this work by automatically calculating derivatives, i.e., auto-
matic differentiation. In practice, based on our designed model the system builds a computational
graph, tracking which data combined throughwhich operations to produce the output. Automatic
differentiation enables the system to subsequently backpropagate gradients. Here, backpropagate
simply means to trace through the computational graph, filling in the partial derivatives with re-
spect to each parameter.

2.5.1 A Simple Example

As a toy example, say that we are interested in differentiating the function y = 2x⊤x with respect
to the column vector x. To start, let us create the variable x and assign it an initial value.

from mxnet import autograd, np, npx

npx.set_np()

x = np.arange(4.0)
x

array([0., 1., 2., 3.])

Before we even calculate the gradient of y with respect to x, we will need a place to store it. It is
important that we do not allocate new memory every time we take a derivative with respect to a
parameter because we will often update the same parameters thousands or millions of times and
could quickly run out of memory. Note that a gradient of a scalar-valued function with respect to
a vector x is itself vector-valued and has the same shape as x.

# We allocate memory for a tensor's gradient by invoking `attach_grad`
x.attach_grad()
# After we calculate a gradient taken with respect to `x`, we will be able to
# access it via the `grad` attribute, whose values are initialized with 0s
x.grad

array([0., 0., 0., 0.])

Now let us calculate y.

# Place our code inside an `autograd.record` scope to build the computational
# graph
with autograd.record():

y = 2 * np.dot(x, x)
y
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array(28.)

Since x is a vector of length 4, an inner product of x and x is performed, yielding the scalar output
that we assign to y. Next, we can automatically calculate the gradient of y with respect to each
component of x by calling the function for backpropagation and printing the gradient.

y.backward()
x.grad

array([ 0., 4., 8., 12.])

The gradient of the function y = 2x⊤x with respect to x should be 4x. Let us quickly verify that
our desired gradient was calculated correctly.

x.grad == 4 * x

array([ True, True, True, True])

Now let us calculate another function of x.

with autograd.record():
y = x.sum()

y.backward()
x.grad # Overwritten by the newly calculated gradient

array([1., 1., 1., 1.])

2.5.2 Backward for Non-Scalar Variables

Technically, when y is not a scalar, themost natural interpretation of the differentiation of a vector
y with respect to a vector x is a matrix. For higher-order and higher-dimensional y and x, the
differentiation result could be a high-order tensor.

However, while thesemore exotic objects do show up in advancedmachine learning (including in
deep learning), more often when we are calling backward on a vector, we are trying to calculate
the derivatives of the loss functions for each constituent of a batch of training examples. Here, our
intent is not to calculate the differentiation matrix but rather the sum of the partial derivatives
computed individually for each example in the batch.

# When we invoke `backward` on a vector-valued variable `y` (function of `x`),
# a new scalar variable is created by summing the elements in `y`. Then the
# gradient of that scalar variable with respect to `x` is computed
with autograd.record():

y = x * x # `y` is a vector
y.backward()
x.grad # Equals to y = sum(x * x)

array([0., 2., 4., 6.])
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2.5.3 Detaching Computation

Sometimes, we wish tomove some calculations outside of the recorded computational graph. For
example, say that y was calculated as a function of x, and that subsequently z was calculated as a
function of both y and x. Now, imagine that we wanted to calculate the gradient of z with respect
to x, but wanted for some reason to treat y as a constant, and only take into account the role that
x played after y was calculated.

Here, we can detach y to return a new variable u that has the same value as y but discards any
information about how ywas computed in the computational graph. In other words, the gradient
will not flow backwards through u to x. Thus, the following backpropagation function computes
the partial derivative of z = u * x with respect to x while treating u as a constant, instead of the
partial derivative of z = x * x * x with respect to x.

with autograd.record():
y = x * x
u = y.detach()
z = u * x

z.backward()
x.grad == u

array([ True, True, True, True])

Since the computation of y was recorded, we can subsequently invoke backpropagation on y to
get the derivative of y = x * x with respect to x, which is 2 * x.

y.backward()
x.grad == 2 * x

array([ True, True, True, True])

2.5.4 Computing the Gradient of Python Control Flow

One benefit of using automatic differentiation is that even if building the computational graph
of a function required passing through a maze of Python control flow (e.g., conditionals, loops,
and arbitrary function calls), we can still calculate the gradient of the resulting variable. In the
following snippet, note that the number of iterations of the while loop and the evaluation of the
if statement both depend on the value of the input a.

def f(a):
b = a * 2
while np.linalg.norm(b) < 1000:

b = b * 2
if b.sum() > 0:

c = b
else:

c = 100 * b
return c

Let us compute the gradient.
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a = np.random.normal()
a.attach_grad()
with autograd.record():

d = f(a)
d.backward()

We can now analyze the f function defined above. Note that it is piecewise linear in its input a. In
other words, for any a there exists some constant scalar k such that f(a) = k * a, where the value
of k depends on the input a. Consequently d / a allows us to verify that the gradient is correct.

a.grad == d / a

array(True)

Summary

• Deep learning frameworks can automate the calculation of derivatives. To use it, we first
attach gradients to those variables with respect to which we desire partial derivatives. We
then record the computation of our target value, execute its function for backpropagation,
and access the resulting gradient.

Exercises

1. Why is the second derivative much more expensive to compute than the first derivative?

2. After running the function for backpropagation, immediately run it again and see what hap-
pens.

3. In the control flow example where we calculate the derivative of d with respect to a, what
would happen if we changed the variable a to a random vector or matrix. At this point, the
result of the calculation f(a) is no longer a scalar. What happens to the result? How do we
analyze this?

4. Redesign an example of finding the gradient of the control flow. Run and analyze the result.

5. Let f(x) = sin(x). Plot f(x) and df(x)
dx , where the latter is computed without exploiting that

f ′(x) = cos(x).

Discussions44
44 https://discuss.d2l.ai/t/34
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2.6 Probability

In some form or another, machine learning is all about making predictions. We might want to
predict the probability of a patient suffering a heart attack in the next year, given their clinical his-
tory. In anomaly detection, wemight want to assess how likely a set of readings from an airplane s̓
jet engine would be, were it operating normally. In reinforcement learning, we want an agent to
act intelligently in an environment. This means we need to think about the probability of getting
a high reward under each of the available actions. And when we build recommender systems we
also need to think about probability. For example, say hypothetically that we worked for a large
online bookseller. We might want to estimate the probability that a particular user would buy
a particular book. For this we need to use the language of probability. Entire courses, majors,
theses, careers, and even departments, are devoted to probability. So naturally, our goal in this
section is not to teach the whole subject. Instead we hope to get you off the ground, to teach you
just enough that you can start building your first deep learning models, and to give you enough of
a flavor for the subject that you can begin to explore it on your own if you wish.

We have already invoked probabilities in previous sections without articulating what precisely
they are or giving a concrete example. Let us get more serious now by considering the first case:
distinguishing cats and dogs based on photographs. This might sound simple but it is actually a
formidable challenge. To start with, the difficulty of the problem may depend on the resolution
of the image.

Fig. 2.6.1: Images of varying resolutions (10× 10, 20× 20, 40× 40, 80× 80, and 160× 160 pixels).

As shown in Fig. 2.6.1, while it is easy for humans to recognize cats and dogs at the resolution of
160× 160 pixels, it becomes challenging at 40× 40 pixels and next to impossible at 10× 10 pixels.
In other words, our ability to tell cats and dogs apart at a large distance (and thus low resolution)
might approach uninformed guessing. Probability gives us a formal way of reasoning about our
level of certainty. If we are completely sure that the image depicts a cat, we say that the probability
that the corresponding label y is “cat”, denoted P (y = “cat”) equals 1. If we had no evidence to
suggest that y = “cat” or that y = “dog”, then we might say that the two possibilities were equally
likely expressing this as P (y = “cat”) = P (y = “dog”) = 0.5. If we were reasonably confident, but
not sure that the image depicted a cat, we might assign a probability 0.5 < P (y = “cat”) < 1.
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Nowconsider the second case: given someweathermonitoring data, wewant to predict the proba-
bility that it will rain in Taipei tomorrow. If it is summertime, the rainmight comewith probability
0.5.

In both cases, we have some value of interest. And in both cases we are uncertain about the out-
come. But there is a key difference between the two cases. In this first case, the image is in fact
either a dog or a cat, and we just do not know which. In the second case, the outcome may actu-
ally be a random event, if you believe in such things (and most physicists do). So probability is a
flexible language for reasoning about our level of certainty, and it can be applied effectively in a
broad set of contexts.

2.6.1 Basic Probability Theory

Say that we cast a die and want to know what the chance is of seeing a 1 rather than another digit.
If the die is fair, all the six outcomes {1, . . . , 6} are equally likely to occur, and thus we would see
a 1 in one out of six cases. Formally we state that 1 occurs with probability 1

6 .

For a real die that we receive from a factory, we might not know those proportions and we would
need to check whether it is tainted. The only way to investigate the die is by casting it many times
and recording the outcomes. For each cast of the die, we will observe a value in {1, . . . , 6}. Given
these outcomes, we want to investigate the probability of observing each outcome.

One natural approach for each value is to take the individual count for that value and to divide it
by the total number of tosses. This gives us an estimate of the probability of a given event. The law
of large numbers tell us that as the number of tosses grows this estimate will draw closer and closer
to the true underlying probability. Before going into the details of what is going here, let us try it
out.

To start, let us import the necessary packages.

%matplotlib inline
import random
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

Next, we will want to be able to cast the die. In statistics we call this process of drawing examples
from probability distributions sampling. The distribution that assigns probabilities to a number
of discrete choices is called the multinomial distribution. We will give a more formal definition of
distribution later, but at a high level, think of it as just an assignment of probabilities to events.

To draw a single sample, we simply pass in a vector of probabilities. The output is another vector
of the same length: its value at index i is the number of times the sampling outcome corresponds
to i.

fair_probs = [1.0 / 6] * 6
np.random.multinomial(1, fair_probs)

array([0, 0, 0, 1, 0, 0], dtype=int64)

If you run the sampler a bunch of times, you will find that you get out random values each time.
As with estimating the fairness of a die, we often want to generate many samples from the same
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distribution. It would be unbearably slow to do this with a Python for loop, so the function we are
using supports drawing multiple samples at once, returning an array of independent samples in
any shape we might desire.

np.random.multinomial(10, fair_probs)

array([1, 1, 5, 1, 1, 1], dtype=int64)

Now that we knowhow to sample rolls of a die, we can simulate 1000 rolls. We can then go through
and count, after each of the 1000 rolls, how many times each number was rolled. Specifically, we
calculate the relative frequency as the estimate of the true probability.

counts = np.random.multinomial(1000, fair_probs).astype(np.float32)
counts / 1000

array([0.162, 0.149, 0.178, 0.17 , 0.166, 0.175])

Because we generated the data from a fair die, we know that each outcome has true probability 1
6 ,

roughly 0.167, so the above output estimates look good.

We can also visualize how these probabilities converge over time towards the true probability. Let
us conduct 500 groups of experiments where each group draws 10 samples.

counts = np.random.multinomial(10, fair_probs, size=500)
cum_counts = counts.astype(np.float32).cumsum(axis=0)
estimates = cum_counts / cum_counts.sum(axis=1, keepdims=True)

d2l.set_figsize((6, 4.5))
for i in range(6):

d2l.plt.plot(estimates[:, i].asnumpy(),
label=("P(die=" + str(i + 1) + ")"))

d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
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Each solid curve corresponds to one of the six values of the die and gives our estimated probability
that the die turns up that value as assessed after each group of experiments. The dashed black line
gives the true underlying probability. As we get more data by conducting more experiments, the
6 solid curves converge towards the true probability.

Axioms of Probability Theory

When dealing with the rolls of a die, we call the set S = {1, 2, 3, 4, 5, 6} the sample space or outcome
space, where each element is an outcome. An event is a set of outcomes from a given sample space.
For instance, “seeing a 5” ({5}) and “seeing an odd number” ({1, 3, 5}) are both valid events of
rolling a die. Note that if the outcome of a random experiment is in event A, then event A has
occurred. That is to say, if 3 dots faced up after rolling a die, since 3 ∈ {1, 3, 5}, we can say that the
event “seeing an odd number” has occurred.

Formally, probability can be thought of as a function thatmaps a set to a real value. The probability
of an eventA in the given sample space S, denoted as P (A), satisfies the following properties:

• For any eventA, its probability is never negative, i.e., P (A) ≥ 0;

• Probability of the entire sample space is 1, i.e., P (S) = 1;

• For any countable sequenceof eventsA1,A2, . . . that aremutually exclusive (Ai∩Aj = ∅ for all
i ̸= j), the probability that any happens is equal to the sum of their individual probabilities,
i.e., P (

∪∞
i=1Ai) =

∑∞
i=1 P (Ai).

These are also the axioms of probability theory, proposed by Kolmogorov in 1933. Thanks to this
axiom system, we can avoid any philosophical dispute on randomness; instead, we can reason
rigorously with a mathematical language. For instance, by letting event A1 be the entire sample
space and Ai = ∅ for all i > 1, we can prove that P (∅) = 0, i.e., the probability of an impossible
event is 0.
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Random Variables

In our random experiment of casting a die, we introduced the notion of a random variable. A ran-
dom variable can be pretty much any quantity and is not deterministic. It could take one value
among a set of possibilities in a random experiment. Consider a random variableX whose value
is in the sample space S = {1, 2, 3, 4, 5, 6} of rolling a die. We can denote the event “seeing a 5”
as {X = 5} or X = 5, and its probability as P ({X = 5}) or P (X = 5). By P (X = a), we make a
distinction between the random variableX and the values (e.g., a) thatX can take. However, such
pedantry results in a cumbersome notation. For a compact notation, on one hand, we can just de-
note P (X) as the distribution over the random variableX: the distribution tells us the probability
thatX takes any value. On the other hand, we can simply write P (a) to denote the probability that
a random variable takes the value a. Since an event in probability theory is a set of outcomes from
the sample space, we can specify a range of values for a random variable to take. For example,
P (1 ≤ X ≤ 3) denotes the probability of the event {1 ≤ X ≤ 3}, which means {X = 1, 2, or, 3}.
Equivalently, P (1 ≤ X ≤ 3) represents the probability that the random variable X can take a
value from {1, 2, 3}.

Note that there is a subtle difference between discrete random variables, like the sides of a die,
and continuous ones, like the weight and the height of a person. There is little point in ask-
ing whether two people have exactly the same height. If we take precise enough measure-
ments you will find that no two people on the planet have the exact same height. In fact, if
we take a fine enough measurement, you will not have the same height when you wake up and
when you go to sleep. So there is no purpose in asking about the probability that someone is
1.80139278291028719210196740527486202 meters tall. Given the world population of humans the
probability is virtually 0. It makes more sense in this case to ask whether someone s̓ height falls
into a given interval, say between 1.79 and 1.81 meters. In these cases we quantify the likelihood
that we see a value as a density. The height of exactly 1.80 meters has no probability, but nonzero
density. In the interval between any two different heights we have nonzero probability. In the rest
of this section, we consider probability in discrete space. For probability over continuous random
variables, you may refer to Section 18.6.

2.6.2 Dealing with Multiple Random Variables

Very often, we will want to consider more than one random variable at a time. For instance, we
maywant tomodel the relationship between diseases and symptoms. Given a disease and a symp-
tom, say “flu” and “cough”, either may or may not occur in a patient with some probability. While
we hope that the probability of both would be close to zero, we may want to estimate these prob-
abilities and their relationships to each other so that we may apply our inferences to effect better
medical care.

As a more complicated example, images contain millions of pixels, thus millions of random vari-
ables. And in many cases images will come with a label, identifying objects in the image. We can
also think of the label as a random variable. We can even think of all the metadata as random
variables such as location, time, aperture, focal length, ISO, focus distance, and camera type. All
of these are random variables that occur jointly. When we deal with multiple random variables,
there are several quantities of interest.
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Joint Probability

The first is called the joint probability P (A = a,B = b). Given any values a and b, the joint proba-
bility lets us answer, what is the probability that A = a and B = b simultaneously? Note that for
any values a and b, P (A = a,B = b) ≤ P (A = a). This has to be the case, since for A = a and
B = b to happen,A = a has to happen and B = b also has to happen (and vice versa). Thus,A = a
and B = b cannot be more likely than A = a or B = b individually.

Conditional Probability

This brings us to an interesting ratio: 0 ≤ P (A=a,B=b)
P (A=a) ≤ 1. We call this ratio a conditional probability

and denote it byP (B = b | A = a): it is the probability ofB = b, provided thatA = a has occurred.

Bayes’ theorem

Using the definition of conditional probabilities, we can derive one of the most useful and cel-
ebrated equations in statistics: Bayes’ theorem. It goes as follows. By construction, we have the
multiplication rule that P (A,B) = P (B | A)P (A). By symmetry, this also holds for P (A,B) =
P (A | B)P (B). Assume that P (B) > 0. Solving for one of the conditional variables we get

P (A | B) =
P (B | A)P (A)

P (B)
. (2.6.1)

Note that hereweuse themore compact notationwhereP (A,B) is a joint distribution andP (A | B)
is a conditional distribution. Such distributions can be evaluated for particular valuesA = a,B = b.

Marginalization

Bayesʼ theorem is very useful if we want to infer one thing from the other, say cause and effect,
but we only know the properties in the reverse direction, as we will see later in this section. One
important operation that we need, to make this work, is marginalization. It is the operation of
determining P (B) from P (A,B). We can see that the probability of B amounts to accounting for
all possible choices of A and aggregating the joint probabilities over all of them:

P (B) =
∑
A

P (A,B), (2.6.2)

which is also known as the sum rule. The probability or distribution as a result of marginalization
is called a marginal probability or a marginal distribution.

Independence

Another useful property to check for is dependence vs. independence. Two random variables A and
B being independentmeans that the occurrence of one event ofA does not reveal any information
about the occurrence of an event of B. In this case P (B | A) = P (B). Statisticians typically
express this as A ⊥ B. From Bayesʼ theorem, it follows immediately that also P (A | B) = P (A).
In all the other cases we call A and B dependent. For instance, two successive rolls of a die are
independent. In contrast, the position of a light switch and the brightness in the room are not
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(they are not perfectly deterministic, though, since we could always have a broken light bulb,
power failure, or a broken switch).

Since P (A | B) = P (A,B)
P (B) = P (A) is equivalent to P (A,B) = P (A)P (B), two random variables are

independent if and only if their joint distribution is the product of their individual distributions.
Likewise, two random variablesA andB are conditionally independent given another random vari-
able C if and only if P (A,B | C) = P (A | C)P (B | C). This is expressed as A ⊥ B | C.

Application

Let us put our skills to the test. Assume that a doctor administers an HIV test to a patient. This
test is fairly accurate and it fails only with 1% probability if the patient is healthy but reporting
him as diseased. Moreover, it never fails to detect HIV if the patient actually has it. We useD1 to
indicate the diagnosis (1 if positive and 0 if negative) andH to denote the HIV status (1 if positive
and 0 if negative). Table 2.6.1 lists such conditional probabilities.

Table 2.6.1: Conditional probability of P (D1 | H).
Conditional probability H = 1 H = 0

P (D1 = 1 | H) 1 0.01
P (D1 = 0 | H) 0 0.99

Note that the column sums are all 1 (but the row sums are not), since the conditional probabil-
ity needs to sum up to 1, just like the probability. Let us work out the probability of the patient
having HIV if the test comes back positive, i.e., P (H = 1 | D1 = 1). Obviously this is going to
depend on how common the disease is, since it affects the number of false alarms. Assume that
the population is quite healthy, e.g., P (H = 1) = 0.0015. To apply Bayesʼ theorem, we need to
apply marginalization and the multiplication rule to determine

P (D1 = 1)

=P (D1 = 1,H = 0) + P (D1 = 1,H = 1)

=P (D1 = 1 | H = 0)P (H = 0) + P (D1 = 1 | H = 1)P (H = 1)

=0.011485.

(2.6.3)

Thus, we get

P (H = 1 | D1 = 1)

=
P (D1 = 1 | H = 1)P (H = 1)

P (D1 = 1)

=0.1306

. (2.6.4)

In other words, there is only a 13.06% chance that the patient actually has HIV, despite using a
very accurate test. As we can see, probability can be counterintuitive.

What should a patient do upon receiving such terrifying news? Likely, the patient would ask the
physician to administer another test to get clarity. The second test has different characteristics
and it is not as good as the first one, as shown in Table 2.6.2.

Table 2.6.2: Conditional probability of P (D2 | H).
Conditional probability H = 1 H = 0

P (D2 = 1 | H) 0.98 0.03
P (D2 = 0 | H) 0.02 0.97
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Unfortunately, the second test comes back positive, too. Let uswork out the requisite probabilities
to invoke Bayesʼ theorem by assuming the conditional independence:

P (D1 = 1, D2 = 1 | H = 0)

=P (D1 = 1 | H = 0)P (D2 = 1 | H = 0)

=0.0003,

(2.6.5)

P (D1 = 1, D2 = 1 | H = 1)

=P (D1 = 1 | H = 1)P (D2 = 1 | H = 1)

=0.98.

(2.6.6)

Now we can apply marginalization and the multiplication rule:

P (D1 = 1, D2 = 1)

=P (D1 = 1, D2 = 1,H = 0) + P (D1 = 1, D2 = 1,H = 1)

=P (D1 = 1, D2 = 1 | H = 0)P (H = 0) + P (D1 = 1, D2 = 1 | H = 1)P (H = 1)

=0.00176955.

(2.6.7)

In the end, the probability of the patient having HIV given both positive tests is

P (H = 1 | D1 = 1, D2 = 1)

=
P (D1 = 1, D2 = 1 | H = 1)P (H = 1)

P (D1 = 1, D2 = 1)

=0.8307.

(2.6.8)

That is, the second test allowed us to gain much higher confidence that not all is well. Despite the
second test being considerably less accurate than the first one, it still significantly improved our
estimate.

2.6.3 Expectation and Variance

To summarize key characteristics of probability distributions, we need some measures. The ex-
pectation (or average) of the random variableX is denoted as

E[X] =
∑
x

xP (X = x). (2.6.9)

When the input of a function f(x) is a random variable drawn from the distribution P with differ-
ent values x, the expectation of f(x) is computed as

Ex∼P [f(x)] =
∑
x

f(x)P (x). (2.6.10)

In many cases we want to measure by how much the random variableX deviates from its expec-
tation. This can be quantified by the variance

Var[X] = E
[
(X − E[X])2

]
= E[X2]− E[X]2. (2.6.11)

Its square root is called the standard deviation. The variance of a function of a random variable
measures by how much the function deviates from the expectation of the function, as different
values x of the random variable are sampled from its distribution:

Var[f(x)] = E
[
(f(x)− E[f(x)])2

]
. (2.6.12)
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Summary

• We can sample from probability distributions.

• We can analyzemultiple random variables using joint distribution, conditional distribution,
Bayesʼ theorem, marginalization, and independence assumptions.

• Expectation and variance offer useful measures to summarize key characteristics of proba-
bility distributions.

Exercises

1. We conducted m = 500 groups of experiments where each group draws n = 10 samples.
Varym and n. Observe and analyze the experimental results.

2. Given two events with probability P (A) and P (B), compute upper and lower bounds on
P (A ∪ B) and P (A ∩ B). (Hint: display the situation using a Venn Diagram45.)

3. Assume that we have a sequence of random variables, say A, B, and C, where B only de-
pends on A, and C only depends on B, can you simplify the joint probability P (A,B,C)?
(Hint: this is a Markov Chain46.)

4. In Section 2.6.2, the first test is more accurate. Why not run the first test twice rather than
run both the first and second tests?

Discussions47

2.7 Documentation

Due to constraints on the length of this book, we cannot possibly introduce every single MXNet
function and class (and you probably would not want us to). The API documentation and addi-
tional tutorials and examples provide plenty of documentation beyond the book. In this section
we provide you with some guidance to exploring the MXNet API.

2.7.1 Finding All the Functions and Classes in a Module

In order to know which functions and classes can be called in a module, we invoke the dir func-
tion. For instance, we can query all properties in the module for generating random numbers:

from mxnet import np

print(dir(np.random))

['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__',
↪→ '__package__', '__spec__', '_mx_nd_np', 'beta', 'chisquare', 'choice', 'exponential',
↪→'gamma', 'gumbel', 'logistic', 'lognormal', 'multinomial', 'multivariate_normal', 'normal',
↪→ 'pareto', 'power', 'rand', 'randint', 'randn', 'rayleigh', 'shuffle', 'uniform', 'weibull
↪→']

45 https://en.wikipedia.org/wiki/Venn_diagram
46 https://en.wikipedia.org/wiki/Markov_chain
47 https://discuss.d2l.ai/t/36
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Generally, we can ignore functions that start and end with __ (special objects in Python) or func-
tions that start with a single _(usually internal functions). Based on the remaining function or
attribute names, we might hazard a guess that this module offers various methods for generating
random numbers, including sampling from the uniform distribution (uniform), normal distribu-
tion (normal), and multinomial distribution (multinomial).

2.7.2 Finding the Usage of Specific Functions and Classes

For more specific instructions on how to use a given function or class, we can invoke the help
function. As an example, let us explore the usage instructions for tensorsʼ ones function.

help(np.ones)

Help on function ones in module mxnet.numpy:

ones(shape, dtype=<class 'numpy.float32'>, order='C', ctx=None)
Return a new array of given shape and type, filled with ones.
This function currently only supports storing multi-dimensional data
in row-major (C-style).

Parameters
----------
shape : int or tuple of int

The shape of the empty array.
dtype : str or numpy.dtype, optional

An optional value type. Default is numpy.float32. Note that this
behavior is different from NumPy's ones function where float64
is the default value, because float32 is considered as the default
data type in deep learning.

order : {'C'}, optional, default: 'C'
How to store multi-dimensional data in memory, currently only row-major
(C-style) is supported.

ctx : Context, optional
An optional device context (default is the current default context).

Returns
-------
out : ndarray

Array of ones with the given shape, dtype, and ctx.

Examples
--------
>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1], dtype=int64)

>>> np.ones((2, 1))
array([[1.],
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[1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

From the documentation, we can see that the ones function creates a new tensorwith the specified
shape and sets all the elements to the value of 1. Whenever possible, you should run a quick test
to confirm your interpretation:

np.ones(4)

array([1., 1., 1., 1.])

In the Jupyter notebook, we can use ? to display the document in another window. For example,
list? will create content that is almost identical to help(list), displaying it in a new browser
window. In addition, if we use two questionmarks, such as list??, the Python code implementing
the function will also be displayed.

Summary

• The official documentation provides plenty of descriptions and examples that are beyond
this book.

• We can look up documentation for the usage of an API by calling the dir and help functions,
or ? and ?? in Jupyter notebooks.

Exercises

1. Look up the documentation for any function or class in the deep learning framework. Can
you also find the documentation on the official website of the framework?

Discussions48

48 https://discuss.d2l.ai/t/38
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3 | Linear Neural Networks

Before we get into the details of deep neural networks, we need to cover the basics of neural net-
work training. In this chapter, wewill cover the entire training process, including defining simple
neural network architectures, handling data, specifying a loss function, and training the model.
In order to make things easier to grasp, we begin with the simplest concepts. Fortunately, classic
statistical learning techniques such as linear and softmax regression can be cast as linear neural
networks. Starting from these classic algorithms, we will introduce you to the basics, providing
the basis for more complex techniques in the rest of the book.

3.1 Linear Regression

Regression refers to a set of methods for modeling the relationship between one or more indepen-
dent variables and a dependent variable. In the natural sciences and social sciences, the purpose
of regression is most often to characterize the relationship between the inputs and outputs. Ma-
chine learning, on the other hand, is most often concerned with prediction.

Regression problems pop up whenever we want to predict a numerical value. Common exam-
ples include predicting prices (of homes, stocks, etc.), predicting length of stay (for patients in
the hospital), demand forecasting (for retail sales), among countless others. Not every prediction
problem is a classic regression problem. In subsequent sections, we will introduce classification
problems, where the goal is to predict membership among a set of categories.

3.1.1 Basic Elements of Linear Regression

Linear regression may be both the simplest and most popular among the standard tools to regres-
sion. Dating back to the dawn of the 19th century, linear regression flows from a few simple
assumptions. First, we assume that the relationship between the independent variables x and the
dependent variable y is linear, i.e., that y can be expressed as a weighted sum of the elements
in x, given some noise on the observations. Second, we assume that any noise is well-behaved
(following a Gaussian distribution).

To motivate the approach, let us start with a running example. Suppose that we wish to estimate
the prices of houses (in dollars) based on their area (in square feet) and age (in years). To actually
develop amodel for predicting house prices, we would need to get our hands on a dataset consist-
ing of sales for which we know the sale price, area, and age for each home. In the terminology of
machine learning, the dataset is called a training dataset or training set, and each row (here the data
corresponding to one sale) is called an example (or data point, data instance, sample). The thing we
are trying to predict (price) is called a label (or target). The independent variables (age and area)
upon which the predictions are based are called features (or covariates).
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Typically, we will use n to denote the number of examples in our dataset. We index the data ex-
amples by i, denoting each input as x(i) = [x

(i)
1 , x

(i)
2 ]⊤ and the corresponding label as y(i).

Linear Model

The linearity assumption just says that the target (price) can be expressed as a weighted sum of
the features (area and age):

price = warea · area+ wage · age+ b. (3.1.1)

In (3.1.1), warea and wage are called weights, and b is called a bias (also called an offset or intercept).
The weights determine the influence of each feature on our prediction and the bias just says what
value the predicted price should take when all of the features take value 0. Even if we will never
see any homes with zero area, or that are precisely zero years old, we still need the bias or else we
will limit the expressivity of ourmodel. Strictly speaking, (3.1.1) is an affine transformation of input
features, which is characterized by a linear transformation of features via weighted sum, combined
with a translation via the added bias.

Given a dataset, our goal is to choose the weights w and the bias b such that on average, the pre-
dictions made according to our model best fit the true prices observed in the data. Models whose
output prediction is determined by the affine transformation of input features are linear models,
where the affine transformation is specified by the chosen weights and bias.

In disciplines where it is common to focus on datasets with just a few features, explicitly express-
ing models long-form like this is common. In machine learning, we usually work with high-
dimensional datasets, so it ismore convenient to employ linear algebra notation. When our inputs
consist of d features, we express our prediction ŷ (in general the “hat” symbol denotes estimates)
as

ŷ = w1x1 + ...+ wdxd + b. (3.1.2)

Collecting all features into a vector x ∈ Rd and all weights into a vector w ∈ Rd, we can express
our model compactly using a dot product:

ŷ = w⊤x+ b. (3.1.3)

In (3.1.3), the vector x corresponds to features of a single data example. We will often find it
convenient to refer to features of our entire dataset of n examples via the design matrix X ∈ Rn×d.
Here, X contains one row for every example and one column for every feature.

For a collection of features X, the predictions ŷ ∈ Rn can be expressed via thematrix-vector prod-
uct:

ŷ = Xw+ b, (3.1.4)

where broadcasting (see Section 2.1.3) is applied during the summation. Given features of a train-
ing datasetX and corresponding (known) labels y, the goal of linear regression is to find theweight
vector w and the bias term b that given features of a new data example sampled from the same
distribution as X, the new example s̓ label will (in expectation) be predicted with the lowest error.

Even if we believe that the best model for predicting y given x is linear, we would not expect to
find a real-world dataset of n examples where y(i) exactly equals w⊤x(i) + b for all 1 ≤ i ≤ n. For
example, whatever instruments we use to observe the features X and labels y might suffer small
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amount ofmeasurement error. Thus, evenwhenwe are confident that the underlying relationship
is linear, we will incorporate a noise term to account for such errors.

Beforewe cango about searching for thebest parameters (ormodel parameters)w and b, wewill need
twomore things: (i) a qualitymeasure for some givenmodel; and (ii) a procedure for updating the
model to improve its quality.

Loss Function

Before we start thinking about how to fit data with our model, we need to determine ameasure of
fitness. The loss function quantifies the distance between the real and predicted value of the target.
The loss will usually be a non-negative number where smaller values are better and perfect pre-
dictions incur a loss of 0. The most popular loss function in regression problems is the squared
error. When our prediction for an example i is ŷ(i) and the corresponding true label is y(i), the
squared error is given by:

l(i)(w, b) =
1

2

(
ŷ(i) − y(i)

)2
. (3.1.5)

The constant 1
2 makes no real difference but will prove notationally convenient, canceling out

when we take the derivative of the loss. Since the training dataset is given to us, and thus out of
our control, the empirical error is only a function of the model parameters. To make things more
concrete, consider the example below where we plot a regression problem for a one-dimensional
case as shown in Fig. 3.1.1.

Fig. 3.1.1: Fit data with a linear model.

Note that large differences between estimates ŷ(i) and observations y(i) lead to even larger contri-
butions to the loss, due to the quadratic dependence. To measure the quality of a model on the
entire dataset of n examples, we simply average (or equivalently, sum) the losses on the training
set.

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
. (3.1.6)

When training the model, we want to find parameters (w∗, b∗) that minimize the total loss across
all training examples:

w∗, b∗ = argmin
w,b

L(w, b). (3.1.7)
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Analytic Solution

Linear regression happens to be an unusually simple optimization problem. Unlike most other
models thatwewill encounter in this book, linear regression canbe solved analytically by applying
a simple formula. To start, we can subsume the bias b into the parameterwby appending a column
to the designmatrix consisting of all ones. Then our prediction problem is tominimize ∥y−Xw∥2.
There is just one critical point on the loss surface and it corresponds to the minimum of the loss
over the entire domain. Taking the derivative of the loss with respect to w and setting it equal to
zero yields the analytic (closed-form) solution:

w∗ = (X⊤X)−1X⊤y. (3.1.8)

While simple problems like linear regression may admit analytic solutions, you should not get
used to such good fortune. Although analytic solutions allow for nice mathematical analysis, the
requirement of an analytic solution is so restrictive that it would exclude all of deep learning.

Minibatch Stochastic Gradient Descent

Even in cases where we cannot solve the models analytically, it turns out that we can still train
models effectively in practice. Moreover, for many tasks, those difficult-to-optimize models turn
out to be somuch better that figuring out how to train them ends up being well worth the trouble.

The key technique for optimizing nearly any deep learning model, and which we will call upon
throughout this book, consists of iteratively reducing the error by updating the parameters in the
direction that incrementally lowers the loss function. This algorithm is called gradient descent.

The most naive application of gradient descent consists of taking the derivative of the loss func-
tion, which is an average of the losses computed on every single example in the dataset. In prac-
tice, this can be extremely slow: we must pass over the entire dataset before making a single
update. Thus, we will often settle for sampling a random minibatch of examples every time we
need to compute the update, a variant called minibatch stochastic gradient descent.

In each iteration, we first randomly sample aminibatchB consisting of a fixed number of training
examples. We then compute the derivative (gradient) of the average loss on the minibatch with
regard to the model parameters. Finally, we multiply the gradient by a predetermined positive
value η and subtract the resulting term from the current parameter values.

We can express the update mathematically as follows (∂ denotes the partial derivative):

(w, b)← (w, b)− η

|B|
∑
i∈B

∂(w,b)l
(i)(w, b). (3.1.9)

To summarize, steps of the algorithm are the following: (i) we initialize the values of the model
parameters, typically at random; (ii) we iteratively sample random minibatches from the data,
updating the parameters in the direction of the negative gradient. For quadratic losses and affine
transformations, we can write this out explicitly as follows:

w← w− η

|B|
∑
i∈B

∂wl
(i)(w, b) = w− η

|B|
∑
i∈B

x(i)
(
w⊤x(i) + b− y(i)

)
,

b← b− η

|B|
∑
i∈B

∂bl
(i)(w, b) = b− η

|B|
∑
i∈B

(
w⊤x(i) + b− y(i)

)
.

(3.1.10)

Note that w and x are vectors in (3.1.10). Here, the more elegant vector notation makes the math
much more readable than expressing things in terms of coefficients, say w1, w2, . . . , wd. The set
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cardinality |B| represents the number of examples in eachminibatch (the batch size) and η denotes
the learning rate. We emphasize that the values of the batch size and learning rate are manually
pre-specified and not typically learned through model training. These parameters that are tun-
able but not updated in the training loop are called hyperparameters. Hyperparameter tuning is the
process by which hyperparameters are chosen, and typically requires that we adjust them based
on the results of the training loop as assessed on a separate validation dataset (or validation set).

After training for some predetermined number of iterations (or until some other stopping criteria
are met), we record the estimated model parameters, denoted ŵ, b̂. Note that even if our function
is truly linear and noiseless, these parameterswill not be the exactminimizers of the loss because,
although the algorithm converges slowly towards the minimizers it cannot achieve it exactly in a
finite number of steps.

Linear regression happens to be a learning problem where there is only one minimum over the
entire domain. However, for more complicated models, like deep networks, the loss surfaces
contain many minima. Fortunately, for reasons that are not yet fully understood, deep learning
practitioners seldom struggle to find parameters that minimize the loss on training sets. Themore
formidable task is to find parameters that will achieve low loss on data that we have not seen
before, a challenge called generalization. We return to these topics throughout the book.

Making Predictions with the Learned Model

Given the learned linear regressionmodel ŵ⊤x+ b̂, we can now estimate the price of a new house
(not contained in the training data) given its area x1 and age x2. Estimating targets given features
is commonly called prediction or inference.

Wewill try to stick with prediction because calling this step inference, despite emerging as standard
jargon in deep learning, is somewhat of a misnomer. In statistics, inference more often denotes
estimating parameters based on a dataset. This misuse of terminology is a common source of
confusion when deep learning practitioners talk to statisticians.

3.1.2 Vectorization for Speed

When training our models, we typically want to process whole minibatches of examples simulta-
neously. Doing this efficiently requires that we vectorize the calculations and leverage fast linear
algebra libraries rather than writing costly for-loops in Python.

%matplotlib inline
import math
import time
from mxnet import np
from d2l import mxnet as d2l

To illustrate why this matters so much, we can consider two methods for adding vectors. To start
we instantiate two 10000-dimensional vectors containing all ones. In one method we will loop
over the vectors with a Python for-loop. In the other method we will rely on a single call to +.

n = 10000
a = np.ones(n)
b = np.ones(n)

Since we will benchmark the running time frequently in this book, let us define a timer.
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class Timer: #@save
"""Record multiple running times."""
def __init__(self):

self.times = []
self.start()

def start(self):
"""Start the timer."""
self.tik = time.time()

def stop(self):
"""Stop the timer and record the time in a list."""
self.times.append(time.time() - self.tik)
return self.times[-1]

def avg(self):
"""Return the average time."""
return sum(self.times) / len(self.times)

def sum(self):
"""Return the sum of time."""
return sum(self.times)

def cumsum(self):
"""Return the accumulated time."""
return np.array(self.times).cumsum().tolist()

Now we can benchmark the workloads. First, we add them, one coordinate at a time, using a
for-loop.

c = np.zeros(n)
timer = Timer()
for i in range(n):

c[i] = a[i] + b[i]
f'{timer.stop():.5f} sec'

'4.30132 sec'

Alternatively, we rely on the reloaded + operator to compute the elementwise sum.

timer.start()
d = a + b
f'{timer.stop():.5f} sec'

'0.00037 sec'

You probably noticed that the second method is dramatically faster than the first. Vectorizing
code often yields order-of-magnitude speedups. Moreover, we push more of the mathematics to
the library and need not write as many calculations ourselves, reducing the potential for errors.
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3.1.3 The Normal Distribution and Squared Loss

While you can already get your hands dirty using only the information above, in the following we
can more formally motivate the squared loss objective via assumptions about the distribution of
noise.

Linear regression was invented by Gauss in 1795, who also discovered the normal distribution
(also called the Gaussian). It turns out that the connection between the normal distribution and
linear regression runs deeper than common parentage. To refresh your memory, the probability
density of a normal distribution with mean µ and variance σ2 (standard deviation σ) is given as

p(x) =
1√
2πσ2

exp
(
− 1

2σ2
(x− µ)2

)
. (3.1.11)

Below we define a Python function to compute the normal distribution.

def normal(x, mu, sigma):
p = 1 / math.sqrt(2 * math.pi * sigma**2)
return p * np.exp(-0.5 / sigma**2 * (x - mu)**2)

We can now visualize the normal distributions.

# Use numpy again for visualization
x = np.arange(-7, 7, 0.01)

# Mean and standard deviation pairs
params = [(0, 1), (0, 2), (3, 1)]
d2l.plot(x, [normal(x, mu, sigma) for mu, sigma in params], xlabel='x',

ylabel='p(x)', figsize=(4.5, 2.5),
legend=[f'mean {mu}, std {sigma}' for mu, sigma in params])

As we can see, changing the mean corresponds to a shift along the x-axis, and increasing the
variance spreads the distribution out, lowering its peak.

One way to motivate linear regression with the mean squared error loss function (or simply
squared loss) is to formally assume that observations arise from noisy observations, where the
noise is normally distributed as follows:

y = w⊤x+ b+ ϵ where ϵ ∼ N (0, σ2). (3.1.12)
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Thus, we can now write out the likelihood of seeing a particular y for a given x via

P (y | x) = 1√
2πσ2

exp
(
− 1

2σ2
(y −w⊤x− b)2

)
. (3.1.13)

Now, according to the principle ofmaximum likelihood, the best values of parametersw and b are
those that maximize the likelihood of the entire dataset:

P (y | X) =
n∏

i=1

p(y(i)|x(i)). (3.1.14)

Estimators chosen according to the principle of maximum likelihood are called maximum likeli-
hood estimators. While, maximizing the product of many exponential functions, might look diffi-
cult, we can simplify things significantly, without changing the objective, by maximizing the log
of the likelihood instead. For historical reasons, optimizations are more often expressed as mini-
mization rather than maximization. So, without changing anything we can minimize the negative
log-likelihood − logP (y | X). Working out the mathematics gives us:

− logP (y | X) =
n∑

i=1

1

2
log(2πσ2) +

1

2σ2

(
y(i) −w⊤x(i) − b

)2
. (3.1.15)

Nowwe just need onemore assumption that σ is some fixed constant. Thus we can ignore the first
term because it does not depend onw or b. Now the second term is identical to the squared error
loss introduced earlier, except for the multiplicative constant 1

σ2 . Fortunately, the solution does
not depend on σ. It follows that minimizing the mean squared error is equivalent to maximum
likelihood estimation of a linear model under the assumption of additive Gaussian noise.

3.1.4 From Linear Regression to Deep Networks

So far we only talked about linear models. While neural networks cover a much richer family of
models, we can begin thinking of the linear model as a neural network by expressing it in the
language of neural networks. To begin, let us start by rewriting things in a “layer” notation.

Neural Network Diagram

Deep learning practitioners like to draw diagrams to visualize what is happening in their models.
In Fig. 3.1.2, we depict our linear regressionmodel as a neural network. Note that these diagrams
highlight the connectivity pattern such as how each input is connected to the output, but not the
values taken by the weights or biases.

Fig. 3.1.2: Linear regression is a single-layer neural network.

For the neural network shown in Fig. 3.1.2, the inputs are x1, . . . , xd, so the number of inputs (or
feature dimensionality) in the input layer is d. The output of the network in Fig. 3.1.2 is o1, so the
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number of outputs in the output layer is 1. Note that the input values are all given and there is just
a single computed neuron. Focusing on where computation takes place, conventionally we do not
consider the input layer when counting layers. That is to say, the number of layers for the neural
network in Fig. 3.1.2 is 1. We can think of linear regression models as neural networks consisting
of just a single artificial neuron, or as single-layer neural networks.

Since for linear regression, every input is connected to every output (in this case there is only one
output), we can regard this transformation (the output layer in Fig. 3.1.2) as a fully-connected layer
or dense layer. We will talk a lot more about networks composed of such layers in the next chapter.

Biology

Since linear regression (invented in 1795) predates computational neuroscience, it might seem
anachronistic to describe linear regression as a neural network. To see why linear models were a
natural place to begin when the cyberneticists/neurophysiologists Warren McCulloch andWalter
Pitts began to developmodels of artificial neurons, consider the cartoonish picture of a biological
neuron in Fig. 3.1.3, consisting of dendrites (input terminals), the nucleus (CPU), the axon (out-
put wire), and the axon terminals (output terminals), enabling connections to other neurons via
synapses.

Dendrite

Cell body

Node of
Ranvier

Axon Terminal

Schwann cell

Myelin sheath

Axon

Nucleus

Fig. 3.1.3: The real neuron.

Information xi arriving from other neurons (or environmental sensors such as the retina) is re-
ceived in the dendrites. In particular, that information isweightedby synapticweightswi determin-
ing the effect of the inputs (e.g., activation or inhibition via the product xiwi). Theweighted inputs
arriving frommultiple sources are aggregated in the nucleus as a weighted sum y =

∑
i xiwi + b,

and this information is then sent for further processing in the axon y, typically after some nonlin-
ear processing via σ(y). From there it either reaches its destination (e.g., a muscle) or is fed into
another neuron via its dendrites.

Certainly, the high-level idea that many such units could be cobbled together with the right con-
nectivity and right learning algorithm, to produce farmore interesting and complex behavior than
any one neuron alone could express owes to our study of real biological neural systems.

At the same time, most research in deep learning today draws little direct inspiration in neuro-
science. We invoke Stuart Russell and Peter Norvig who, in their classic AI text book Artificial In-
telligence: A Modern Approach (Russell & Norvig, 2016), pointed out that although airplanes might
have been inspired by birds, ornithology has not been the primary driver of aeronautics innovation
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for some centuries. Likewise, inspiration in deep learning these days comes in equal or greater
measure frommathematics, statistics, and computer science.

Summary

• Key ingredients in a machine learningmodel are training data, a loss function, an optimiza-
tion algorithm, and quite obviously, the model itself.

• Vectorizing makes everything better (mostly math) and faster (mostly code).

• Minimizing an objective function and performing maximum likelihood estimation can
mean the same thing.

• Linear regression models are neural networks, too.

Exercises

1. Assume that we have some data x1, . . . , xn ∈ R. Our goal is to find a constant b such that∑
i(xi − b)2 is minimized.

1. Find a analytic solution for the optimal value of b.

2. How does this problem and its solution relate to the normal distribution?

2. Derive the analytic solution to the optimization problem for linear regression with squared
error. To keep things simple, you can omit the bias b from the problem (we can do this in
principled fashion by adding one column to X consisting of all ones).

1. Write out the optimization problem in matrix and vector notation (treat all the data as
a single matrix, and all the target values as a single vector).

2. Compute the gradient of the loss with respect to w.

3. Find the analytic solution by setting the gradient equal to zero and solving the matrix
equation.

4. When might this be better than using stochastic gradient descent? When might this
method break?

3. Assume that the noise model governing the additive noise ϵ is the exponential distribution.
That is, p(ϵ) = 1

2 exp(−|ϵ|).

1. Write out the negative log-likelihood of the data under the model− logP (y | X).

2. Can you find a closed form solution?

3. Suggest a stochastic gradient descent algorithm to solve this problem. What could pos-
sibly go wrong (hint: what happens near the stationary point as we keep on updating
the parameters)? Can you fix this?

Discussions49
49 https://discuss.d2l.ai/t/40
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3.2 Linear Regression Implementation from Scratch

Now that you understand the key ideas behind linear regression, we can begin to work through
a hands-on implementation in code. In this section, we will implement the entire method from
scratch, including the data pipeline, the model, the loss function, and the minibatch stochastic
gradient descent optimizer. While modern deep learning frameworks can automate nearly all of
this work, implementing things from scratch is the only way to make sure that you really know
what you are doing. Moreover, when it comes time to customize models, defining our own layers
or loss functions, understandinghow thingsworkunder thehoodwill provehandy. In this section,
wewill rely only on tensors and auto differentiation. Afterwards, wewill introduce amore concise
implementation, taking advantage of bells and whistles of deep learning frameworks.

%matplotlib inline
import random
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

3.2.1 Generating the Dataset

To keep things simple, we will construct an artificial dataset according to a linear model with
additive noise. Our task will be to recover this model s̓ parameters using the finite set of examples
contained in our dataset. We will keep the data low-dimensional so we can visualize it easily. In
the following code snippet, we generate a dataset containing 1000 examples, each consisting of 2
features sampled from a standard normal distribution. Thus our synthetic dataset will be amatrix
X ∈ R1000×2.

The true parameters generating our dataset will be w = [2,−3.4]⊤ and b = 4.2, and our synthetic
labels will be assigned according to the following linear model with the noise term ϵ:

y = Xw+ b+ ϵ. (3.2.1)

You could think of ϵ as capturing potential measurement errors on the features and labels. We
will assume that the standard assumptions hold and thus that ϵ obeys a normal distribution with
mean of 0. To make our problem easy, we will set its standard deviation to 0.01. The following
code generates our synthetic dataset.

def synthetic_data(w, b, num_examples): #@save
"""Generate y = Xw + b + noise."""
X = np.random.normal(0, 1, (num_examples, len(w)))
y = np.dot(X, w) + b
y += np.random.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

Note that each row in features consists of a 2-dimensional data example and that each row in
labels consists of a 1-dimensional label value (a scalar).
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print('features:', features[0], '\nlabel:', labels[0])

features: [2.2122064 1.1630787]
label: [4.662078]

By generating a scatter plot using the second feature features[:, 1] and labels, we can clearly
observe the linear correlation between the two.

d2l.set_figsize()
# The semicolon is for displaying the plot only
d2l.plt.scatter(features[:, (1)].asnumpy(), labels.asnumpy(), 1);

3.2.2 Reading the Dataset

Recall that training models consists of making multiple passes over the dataset, grabbing one
minibatch of examples at a time, and using them to update our model. Since this process is so
fundamental to training machine learning algorithms, it is worth defining a utility function to
shuffle the dataset and access it in minibatches.

In the following code, we define the data_iter function to demonstrate one possible implemen-
tation of this functionality. The function takes a batch size, a matrix of features, and a vector of
labels, yieldingminibatches of the size batch_size. Eachminibatch consists of a tuple of features
and labels.

def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
# The examples are read at random, in no particular order
random.shuffle(indices)
for i in range(0, num_examples, batch_size):

batch_indices = np.array(indices[i:min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]

In general, note that we want to use reasonably sized minibatches to take advantage of the GPU
hardware, which excels at parallelizing operations. Because each example can be fed through our
models in parallel and the gradient of the loss function for each example can also be taken in
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parallel, GPUs allow us to process hundreds of examples in scarcely more time than it might take
to process just a single example.

To build some intuition, let us read and print the first small batch of data examples. The shape of
the features in each minibatch tells us both the minibatch size and the number of input features.
Likewise, our minibatch of labels will have a shape given by batch_size.

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break

[[-0.93316925 1.5430632 ]
[ 0.1737154 -1.3096327 ]
[-0.17182696 0.71263075]
[-1.0310302 -1.0057124 ]
[ 0.8591078 0.66443396]
[-0.35391203 1.2594353 ]
[-0.5836186 -0.07530449]
[-0.04391905 -1.0315224 ]
[ 0.8468736 -0.55909204]
[-0.9354301 -0.9410188 ]]
[[-2.9196413 ]
[ 9.009764 ]
[ 1.4362991 ]
[ 5.54579 ]
[ 3.6709807 ]
[-0.78678733]
[ 3.2921002 ]
[ 7.6282578 ]
[ 7.7833023 ]
[ 5.5244083 ]]

As we run the iteration, we obtain distinct minibatches successively until the entire dataset has
been exhausted (try this). While the iteration implemented above is good for didactic purposes,
it is inefficient in ways that might get us in trouble on real problems. For example, it requires that
we load all the data in memory and that we perform lots of randommemory access. The built-in
iterators implemented in a deep learning framework are considerablymore efficient and they can
deal with both data stored in files and data fed via data streams.

3.2.3 Initializing Model Parameters

Beforewe can begin optimizing ourmodel s̓ parameters byminibatch stochastic gradient descent,
we need to have some parameters in the first place. In the following code, we initialize weights
by sampling random numbers from a normal distribution with mean 0 and a standard deviation
of 0.01, and setting the bias to 0.

w = np.random.normal(0, 0.01, (2, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
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After initializing our parameters, our next task is to update them until they fit our data sufficiently
well. Each update requires taking the gradient of our loss functionwith respect to the parameters.
Given this gradient, we can update each parameter in the direction that may reduce the loss.

Since nobody wants to compute gradients explicitly (this is tedious and error prone), we use au-
tomatic differentiation, as introduced in Section 2.5, to compute the gradient.

3.2.4 Defining the Model

Next, we must define our model, relating its inputs and parameters to its outputs. Recall that to
calculate the output of the linearmodel, we simply take thematrix-vector dot product of the input
features X and the model weights w, and add the offset b to each example. Note that below Xw is
a vector and b is a scalar. Recall the broadcasting mechanism as described in Section 2.1.3. When
we add a vector and a scalar, the scalar is added to each component of the vector.

def linreg(X, w, b): #@save
"""The linear regression model."""
return np.dot(X, w) + b

3.2.5 Defining the Loss Function

Since updating ourmodel requires taking the gradient of our loss function, we ought to define the
loss function first. Here we will use the squared loss function as described in Section 3.1. In the
implementation, we need to transform the true value y into the predicted value s̓ shape y_hat. The
result returned by the following function will also have the same shape as y_hat.

def squared_loss(y_hat, y): #@save
"""Squared loss."""
return (y_hat - y.reshape(y_hat.shape))**2 / 2

3.2.6 Defining the Optimization Algorithm

As we discussed in Section 3.1, linear regression has a closed-form solution. However, this is not
a book about linear regression: it is a book about deep learning. Since none of the other models
that this book introduces can be solved analytically, wewill take this opportunity to introduce your
first working example of minibatch stochastic gradient descent.

At each step, using oneminibatch randomly drawn fromour dataset, wewill estimate the gradient
of the loss with respect to our parameters. Next, we will update our parameters in the direction
that may reduce the loss. The following code applies the minibatch stochastic gradient descent
update, given a set of parameters, a learning rate, and a batch size. The size of the update step is
determined by the learning rate lr. Because our loss is calculated as a sum over the minibatch of
examples, we normalize our step size by the batch size (batch_size), so that the magnitude of a
typical step size does not depend heavily on our choice of the batch size.

def sgd(params, lr, batch_size): #@save
"""Minibatch stochastic gradient descent."""
for param in params:

param[:] = param - lr * param.grad / batch_size
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3.2.7 Training

Now that we have all of the parts in place, we are ready to implement the main training loop. It
is crucial that you understand this code because you will see nearly identical training loops over
and over again throughout your career in deep learning.

In each iteration, wewill grab aminibatch of training examples, and pass them through ourmodel
to obtain a set of predictions. After calculating the loss, we initiate the backwards pass through
the network, storing the gradients with respect to each parameter. Finally, we will call the opti-
mization algorithm sgd to update the model parameters.

In summary, we will execute the following loop:

• Initialize parameters (w, b)

• Repeat until done

– Compute gradient g← ∂(w,b)
1
|B|
∑

i∈B l(x(i), y(i),w, b)

– Update parameters (w, b)← (w, b)− ηg

In each epoch, we will iterate through the entire dataset (using the data_iter function) once pass-
ing through every example in the training dataset (assuming that the number of examples is di-
visible by the batch size). The number of epochs num_epochs and the learning rate lr are both
hyperparameters, which we set here to 3 and 0.03, respectively. Unfortunately, setting hyperpa-
rameters is tricky and requires some adjustment by trial and error. We elide these details for now
but revise them later in Chapter 11.

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):

with autograd.record():
l = loss(net(X, w, b), y) # Minibatch loss in `X` and `y`

# Because `l` has a shape (`batch_size`, 1) and is not a scalar
# variable, the elements in `l` are added together to obtain a new
# variable, on which gradients with respect to [`w`, `b`] are computed
l.backward()
sgd([w, b], lr, batch_size) # Update parameters using their gradient

train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

epoch 1, loss 0.025025
epoch 2, loss 0.000093
epoch 3, loss 0.000051

In this case, because we synthesized the dataset ourselves, we know precisely what the true pa-
rameters are. Thus, we can evaluate our success in training by comparing the true parameters
with those that we learned through our training loop. Indeed they turn out to be very close to
each other.
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print(f'error in estimating w: {true_w - w.reshape(true_w.shape)}')
print(f'error in estimating b: {true_b - b}')

error in estimating w: [0.00039625 0.00020432]
error in estimating b: [0.00054502]

Note that we should not take it for granted that we are able to recover the parameters perfectly.
However, in machine learning, we are typically less concerned with recovering true underlying
parameters, and more concerned with parameters that lead to highly accurate prediction. For-
tunately, even on difficult optimization problems, stochastic gradient descent can often find re-
markably good solutions, owing partly to the fact that, for deep networks, there exist many con-
figurations of the parameters that lead to highly accurate prediction.

Summary

• We saw how a deep network can be implemented and optimized from scratch, using just
tensors and auto differentiation, without any need for defining layers or fancy optimizers.

• This section only scratches the surface of what is possible. In the following sections, we will
describe additional models based on the concepts that we have just introduced and learn
how to implement themmore concisely.

Exercises

1. What would happen if we were to initialize the weights to zero. Would the algorithm still
work?

2. Assume that you are Georg Simon Ohm50 trying to come up with a model between voltage
and current. Can you use auto differentiation to learn the parameters of your model?

3. Can you use Planck s̓ Law51 to determine the temperature of an object using spectral energy
density?

4. What are the problems you might encounter if you wanted to compute the second deriva-
tives? How would you fix them?

5. Why is the reshape function needed in the squared_loss function?

6. Experiment using different learning rates to find out how fast the loss function value drops.

7. If the number of examples cannot be divided by the batch size, what happens to the
data_iter functions̓ behavior?

Discussions52
50 https://en.wikipedia.org/wiki/Georg_Ohm
51 https://en.wikipedia.org/wiki/Planck%27s_law
52 https://discuss.d2l.ai/t/42
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3.3 Concise Implementation of Linear Regression

Broad and intense interest in deep learning for the past several years has inspired companies,
academics, and hobbyists to develop a variety of mature open source frameworks for automating
the repetitive work of implementing gradient-based learning algorithms. In Section 3.2, we relied
only on (i) tensors for data storage and linear algebra; and (ii) auto differentiation for calculat-
ing gradients. In practice, because data iterators, loss functions, optimizers, and neural network
layers are so common, modern libraries implement these components for us as well.

In this section, we will show you how to implement the linear regression model from Section 3.2
concisely by using high-level APIs of deep learning frameworks.

3.3.1 Generating the Dataset

To start, we will generate the same dataset as in Section 3.2.

from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

true_w = np.array([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

3.3.2 Reading the Dataset

Rather than rolling our own iterator, we can call upon the existing API in a framework to read
data. We pass in features and labels as arguments and specify batch_size when instantiating
a data iterator object. Besides, the boolean value is_train indicates whether or not we want the
data iterator object to shuffle the data on each epoch (pass through the dataset).

def load_array(data_arrays, batch_size, is_train=True): #@save
"""Construct a Gluon data iterator."""
dataset = gluon.data.ArrayDataset(*data_arrays)
return gluon.data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)

Now we can use data_iter in much the same way as we called the data_iter function in Section
3.2. To verify that it is working, we can read and print the first minibatch of examples. Comparing
with Section 3.2, here we use iter to construct a Python iterator and use next to obtain the first
item from the iterator.

next(iter(data_iter))
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[array([[ 0.67848086, -0.7045922 ],
[-0.9669159 , -0.8711447 ],
[-1.0352775 , 1.6948094 ],
[ 0.8515685 , 0.12359928],
[-0.6308071 , 0.53733146],
[ 0.6862904 , 1.07628 ],
[ 0.1130666 , -0.659559 ],
[ 0.308205 , 0.9416017 ],
[-0.34304565, 0.9344402 ],
[-1.5367762 , 1.0635569 ]]),

array([[ 7.961054 ],
[ 5.2282877],
[-3.6350167],
[ 5.4853864],
[ 1.0948168],
[ 1.9102741],
[ 6.6553063],
[ 1.6211131],
[ 0.3322031],
[-2.4930956]])]

3.3.3 Defining the Model

When we implemented linear regression from scratch in Section 3.2, we defined our model pa-
rameters explicitly and coded up the calculations to produce output using basic linear algebra
operations. You should know how to do this. But once your models get more complex, and once
you have to do this nearly every day, you will be glad for the assistance. The situation is similar
to coding up your own blog from scratch. Doing it once or twice is rewarding and instructive, but
youwould be a lousyweb developer if every time you needed a blog you spent amonth reinventing
the wheel.

For standard operations, we canuse a framework s̓ predefined layers, which allowus to focus espe-
cially on the layers used to construct themodel rather thanhaving to focus on the implementation.
We will first define a model variable net, which will refer to an instance of the Sequential class.
The Sequential class defines a container for several layers that will be chained together. Given
input data, a Sequential instance passes it through the first layer, in turn passing the output as
the second layer s̓ input and so forth. In the following example, our model consists of only one
layer, so we do not really need Sequential. But since nearly all of our future models will involve
multiple layers, we will use it anyway just to familiarize you with the most standard workflow.

Recall the architecture of a single-layer network as shown in Fig. 3.1.2. The layer is said to be fully-
connected because each of its inputs is connected to each of its outputs bymeans of amatrix-vector
multiplication.

In Gluon, the fully-connected layer is defined in the Dense class. Since we only want to generate a
single scalar output, we set that number to 1.

It is worth noting that, for convenience, Gluon does not require us to specify the input shape for
each layer. So here, we do not need to tell Gluon howmany inputs go into this linear layer. When
we first try to pass data through our model, e.g., when we execute net(X) later, Gluon will auto-
matically infer the number of inputs to each layer. We will describe how this works inmore detail
later.
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# `nn` is an abbreviation for neural networks
from mxnet.gluon import nn

net = nn.Sequential()
net.add(nn.Dense(1))

3.3.4 Initializing Model Parameters

Before using net, we need to initialize the model parameters, such as the weights and bias in the
linear regression model. Deep learning frameworks often have a predefined way to initialize the
parameters. Herewe specify that eachweight parameter should be randomly sampled fromanor-
mal distribution with mean 0 and standard deviation 0.01. The bias parameter will be initialized
to zero.

We will import the initializer module from MXNet. This module provides various methods
for model parameter initialization. Gluon makes init available as a shortcut (abbreviation) to
access the initializer package. We only specify how to initialize the weight by calling init.
Normal(sigma=0.01). Bias parameters are initialized to zero by default.

from mxnet import init

net.initialize(init.Normal(sigma=0.01))

The code abovemay look straightforwardbut you shouldnote that something strange is happening
here. We are initializing parameters for a network even though Gluon does not yet know how
many dimensions the input will have! It might be 2 as in our example or it might be 2000. Gluon
lets us get away with this because behind the scene, the initialization is actually deferred. The
real initialization will take place only when we for the first time attempt to pass data through the
network. Just be careful to remember that since the parameters have not been initialized yet, we
cannot access or manipulate them.

3.3.5 Defining the Loss Function

In Gluon, the lossmodule defines various loss functions. In this example, we will use the Gluon
implementation of squared loss (L2Loss).

loss = gluon.loss.L2Loss()

3.3.6 Defining the Optimization Algorithm

Minibatch stochastic gradient descent is a standard tool for optimizing neural networks and thus
Gluon supports it alongside a number of variations on this algorithm through its Trainer class.
When we instantiate Trainer, we will specify the parameters to optimize over (obtainable from
our model net via net.collect_params()), the optimization algorithm we wish to use (sgd), and
a dictionary of hyperparameters required by our optimization algorithm. Minibatch stochastic
gradient descent just requires that we set the value learning_rate, which is set to 0.03 here.
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from mxnet import gluon

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.03})

3.3.7 Training

You might have noticed that expressing our model through high-level APIs of a deep learning
framework requires comparatively few lines of code. We did not have to individually allocate
parameters, define our loss function, or implement minibatch stochastic gradient descent. Once
we start working with much more complex models, advantages of high-level APIs will grow con-
siderably. However, once we have all the basic pieces in place, the training loop itself is strikingly
similar to what we did when implementing everything from scratch.

To refresh your memory: for some number of epochs, we will make a complete pass over the
dataset (train_data), iteratively grabbing oneminibatch of inputs and the corresponding ground-
truth labels. For each minibatch, we go through the following ritual:

• Generate predictions by calling net(X) and calculate the loss l (the forward propagation).

• Calculate gradients by running the backpropagation.

• Update the model parameters by invoking our optimizer.

For good measure, we compute the loss after each epoch and print it to monitor progress.

num_epochs = 3
for epoch in range(num_epochs):

for X, y in data_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l.mean().asnumpy():f}')

epoch 1, loss 0.024892
epoch 2, loss 0.000090
epoch 3, loss 0.000051

Below, we compare themodel parameters learned by training on finite data and the actual param-
eters that generated our dataset. To access parameters, we first access the layer that we need from
net and then access that layer s̓ weights and bias. As in our from-scratch implementation, note
that our estimated parameters are close to their ground-truth counterparts.

w = net[0].weight.data()
print(f'error in estimating w: {true_w - w.reshape(true_w.shape)}')
b = net[0].bias.data()
print(f'error in estimating b: {true_b - b}')

error in estimating w: [ 8.7058544e-04 -3.8385391e-05]
error in estimating b: [0.00039387]
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Summary

• Using Gluon, we can implement models much more concisely.

• In Gluon, the datamodule provides tools for data processing, the nnmodule defines a large
number of neural network layers, and the loss module defines many common loss func-
tions.

• MXNet s̓ module initializer provides various methods for model parameter initialization.

• Dimensionality and storage are automatically inferred, but be careful not to attempt to ac-
cess parameters before they have been initialized.

Exercises

1. If we replace l = loss(output, y) with l = loss(output, y).mean(), we need to change
trainer.step(batch_size) to trainer.step(1) for the code to behave identically. Why?

2. Review the MXNet documentation to see what loss functions and initialization methods are
provided in the modules gluon.loss and init. Replace the loss by Huber s̓ loss.

3. How do you access the gradient of dense.weight?

Discussions53

3.4 Softmax Regression

In Section 3.1, we introduced linear regression, working through implementations from scratch
in Section 3.2 and again using high-level APIs of a deep learning framework in Section 3.3 to do
the heavy lifting.

Regression is the hammer we reach for when we want to answer how much? or how many? ques-
tions. If you want to predict the number of dollars (price) at which a house will be sold, or the
number of wins a baseball team might have, or the number of days that a patient will remain
hospitalized before being discharged, then you are probably looking for a regression model.

In practice, we aremore often interested in classification: asking not “howmuch” but “which one”:

• Does this email belong in the spam folder or the inbox?

• Is this customer more likely to sign up or not to sign up for a subscription service?

• Does this image depict a donkey, a dog, a cat, or a rooster?

• Which movie is Aston most likely to watch next?

Colloquially,machine learning practitioners overload theword classification to describe two subtly
different problems: (i) those where we are interested only in hard assignments of examples to
categories (classes); and (ii) those where we wish to make soft assignments, i.e., to assess the
probability that each category applies. The distinction tends to get blurred, in part, because often,
even when we only care about hard assignments, we still use models that make soft assignments.

53 https://discuss.d2l.ai/t/44
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3.4.1 Classification Problem

To get our feet wet, let us start off with a simple image classification problem. Here, each input
consists of a 2× 2 grayscale image. We can represent each pixel value with a single scalar, giving
us four features x1, x2, x3, x4. Further, let us assume that each image belongs to one among the
categories “cat”, “chicken”, and “dog”.

Next, we have to choose how to represent the labels. We have two obvious choices. Per-
haps the most natural impulse would be to choose y ∈ {1, 2, 3}, where the integers repre-
sent {dog, cat, chicken} respectively. This is a great way of storing such information on a com-
puter. If the categories had some natural ordering among them, say if we were trying to predict
{baby, toddler, adolescent, young adult, adult, geriatric}, then it might even make sense to cast
this problem as regression and keep the labels in this format.

But general classification problems do not come with natural orderings among the classes. For-
tunately, statisticians long ago invented a simple way to represent categorical data: the one-hot
encoding. A one-hot encoding is a vector with as many components as we have categories. The
component corresponding to particular instance s̓ category is set to 1 and all other components
are set to 0. In our case, a label ywould be a three-dimensional vector, with (1, 0, 0) corresponding
to “cat”, (0, 1, 0) to “chicken”, and (0, 0, 1) to “dog”:

y ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (3.4.1)

3.4.2 Network Architecture

In order to estimate the conditional probabilities associated with all the possible classes, we need
amodel withmultiple outputs, one per class. To address classification with linearmodels, we will
need as many affine functions as we have outputs. Each output will correspond to its own affine
function. In our case, since we have 4 features and 3 possible output categories, we will need 12
scalars to represent the weights (w with subscripts), and 3 scalars to represent the biases (b with
subscripts). We compute these three logits, o1, o2, and o3, for each input:

o1 = x1w11 + x2w12 + x3w13 + x4w14 + b1,

o2 = x1w21 + x2w22 + x3w23 + x4w24 + b2,

o3 = x1w31 + x2w32 + x3w33 + x4w34 + b3.

(3.4.2)

We can depict this calculation with the neural network diagram shown in Fig. 3.4.1. Just as in lin-
ear regression, softmax regression is also a single-layer neural network. And since the calculation
of each output, o1, o2, and o3, depends on all inputs, x1, x2, x3, and x4, the output layer of softmax
regression can also be described as fully-connected layer.

Fig. 3.4.1: Softmax regression is a single-layer neural network.

To express the model more compactly, we can use linear algebra notation. In vector form, we
arrive at o = Wx + b, a form better suited both for mathematics, and for writing code. Note that
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we have gathered all of ourweights into a 3×4matrix and that for features of a given data example
x, our outputs are given by a matrix-vector product of our weights by our input features plus our
biases b.

3.4.3 Parameterization Cost of Fully-Connected Layers

As we will see in subsequent chapters, fully-connected layers are ubiquitous in deep learning.
However, as the name suggests, fully-connected layers are fully connected with potentially many
learnable parameters. Specifically, for any fully-connected layer with d inputs and q outputs, the
parameterization cost isO(dq), which can be prohibitively high in practice. Fortunately, this cost
of transforming d inputs into q outputs can be reduced to O(dqn ), where the hyperparameter n
can be flexibly specified by us to balance between parameter saving and model effectiveness in
real-world applications (Zhang et al., 2021).

3.4.4 Softmax Operation

Themain approach that we are going to take here is to interpret the outputs of ourmodel as proba-
bilities. We will optimize our parameters to produce probabilities that maximize the likelihood of
the observed data. Then, to generate predictions, we will set a threshold, for example, choosing
the label with the maximum predicted probabilities.

Put formally, we would like any output ŷj to be interpreted as the probability that a given item
belongs to class j. Then we can choose the class with the largest output value as our prediction
argmaxj yj. For example, if ŷ1, ŷ2, and ŷ3 are 0.1, 0.8, and 0.1, respectively, then we predict cate-
gory 2, which (in our example) represents “chicken”.

You might be tempted to suggest that we interpret the logits o directly as our outputs of interest.
However, there are some problems with directly interpreting the output of the linear layer as a
probability. On one hand, nothing constrains these numbers to sum to 1. On the other hand,
depending on the inputs, they can take negative values. These violate basic axioms of probability
presented in Section 2.6

To interpret our outputs as probabilities, we must guarantee that (even on new data), they will be
nonnegative and sum up to 1. Moreover, we need a training objective that encourages the model
to estimate faithfully probabilities. Of all instanceswhen a classifier outputs 0.5, we hope that half
of those examples will actually belong to the predicted class. This is a property called calibration.

The softmax function, invented in 1959 by the social scientist R. Duncan Luce in the context of
choice models, does precisely this. To transform our logits such that they become nonnegative and
sum to 1, while requiring that the model remains differentiable, we first exponentiate each logit
(ensuring non-negativity) and then divide by their sum (ensuring that they sum to 1):

ŷ = softmax(o) where ŷj =
exp(oj)∑
k exp(ok)

. (3.4.3)

It is easy to see ŷ1+ ŷ2+ ŷ3 = 1with 0 ≤ ŷj ≤ 1 for all j. Thus, ŷ is a proper probability distribution
whose element values can be interpreted accordingly. Note that the softmax operation does not
change the ordering among the logits o, which are simply the pre-softmax values that determine
the probabilities assigned to each class. Therefore, during predictionwe can still pick out themost
likely class by

argmax
j

ŷj = argmax
j

oj . (3.4.4)
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Although softmax is a nonlinear function, the outputs of softmax regression are still determined
by an affine transformation of input features; thus, softmax regression is a linear model.

3.4.5 Vectorization for Minibatches

To improve computational efficiency and take advantage of GPUs, we typically carry out vector
calculations for minibatches of data. Assume that we are given a minibatch X of examples with
feature dimensionality (number of inputs) d and batch size n. Moreover, assume that we have q
categories in the output. Then the minibatch features X are in Rn×d, weightsW ∈ Rd×q, and the
bias satisfies b ∈ R1×q.

O = XW+ b,
Ŷ = softmax(O).

(3.4.5)

This accelerates the dominant operation into a matrix-matrix product XW vs. the matrix-vector
products we would be executing if we processed one example at a time. Since each row in X rep-
resents a data example, the softmax operation itself can be computed rowwise: for each row of
O, exponentiate all entries and then normalize them by the sum. Triggering broadcasting during
the summation XW+b in (3.4.5), both the minibatch logits O and output probabilities Ŷ are n× q
matrices.

3.4.6 Loss Function

Next, we need a loss function to measure the quality of our predicted probabilities. We will rely
onmaximum likelihood estimation, the very same concept that we encounteredwhen providing a
probabilistic justification for themean squared error objective in linear regression (Section 3.1.3).

Log-Likelihood

The softmax function gives us a vector ŷ, which we can interpret as estimated conditional prob-
abilities of each class given any input x, e.g., ŷ1 = P (y = cat | x). Suppose that the entire dataset
{X,Y} has n examples, where the example indexed by i consists of a feature vector x(i) and a one-
hot label vector y(i). We can compare the estimates with reality by checking how probable the
actual classes are according to our model, given the features:

P (Y | X) =
n∏

i=1

P (y(i) | x(i)). (3.4.6)

According to maximum likelihood estimation, wemaximize P (Y | X), which is equivalent to min-
imizing the negative log-likelihood:

− logP (Y | X) =
n∑

i=1

− logP (y(i) | x(i)) =
n∑

i=1

l(y(i), ŷ(i)), (3.4.7)

where for any pair of label y and model prediction ŷ over q classes, the loss function l is

l(y, ŷ) = −
q∑

j=1

yj log ŷj . (3.4.8)
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For reasons explained later on, the loss function in (3.4.8) is commonly called the cross-entropy loss.
Since y is a one-hot vector of length q, the sum over all its coordinates j vanishes for all but one
term. Since all ŷj are predicted probabilities, their logarithm is never larger than 0. Consequently,
the loss function cannot be minimized any further if we correctly predict the actual label with
certainty, i.e., if the predicted probability P (y | x) = 1 for the actual label y. Note that this is
often impossible. For example, there might be label noise in the dataset (some examples may be
mislabeled). It may also not be possible when the input features are not sufficiently informative
to classify every example perfectly.

Softmax and Derivatives

Since the softmax and the corresponding loss are so common, it is worth understanding a bit
better how it is computed. Plugging (3.4.3) into the definition of the loss in (3.4.8) and using the
definition of the softmax we obtain:

l(y, ŷ) = −
q∑

j=1

yj log
exp(oj)∑q
k=1 exp(ok)

=

q∑
j=1

yj log
q∑

k=1

exp(ok)−
q∑

j=1

yjoj

= log
q∑

k=1

exp(ok)−
q∑

j=1

yjoj .

(3.4.9)

To understand a bit better what is going on, consider the derivative with respect to any logit oj.
We get

∂oj l(y, ŷ) =
exp(oj)∑q
k=1 exp(ok)

− yj = softmax(o)j − yj . (3.4.10)

In other words, the derivative is the difference between the probability assigned by our model,
as expressed by the softmax operation, and what actually happened, as expressed by elements in
the one-hot label vector. In this sense, it is very similar to what we saw in regression, where the
gradient was the difference between the observation y and estimate ŷ. This is not coincidence.
In any exponential family (see the online appendix on distributions54) model, the gradients of
the log-likelihood are given by precisely this term. This fact makes computing gradients easy in
practice.

Cross-Entropy Loss

Now consider the case where we observe not just a single outcome but an entire distribution over
outcomes. We canuse the same representation as before for the label y. The only difference is that
rather than a vector containing only binary entries, say (0, 0, 1), we nowhave a generic probability
vector, say (0.1, 0.2, 0.7). Themath that we used previously to define the loss l in (3.4.8) still works
out fine, just that the interpretation is slightlymore general. It is the expected value of the loss for a
distribution over labels. This loss is called the cross-entropy loss and it is one of themost commonly
used losses for classification problems. We can demystify the name by introducing just the basics
of information theory. If you wish to understand more details of information theory, you may
further refer to the online appendix on information theory55.

54 https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/distributions.html
55 https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/information-theory.html
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3.4.7 Information Theory Basics

Information theory deals with the problem of encoding, decoding, transmitting, andmanipulating
information (also known as data) in as concise form as possible.

Entropy

The central idea in information theory is to quantify the information content in data. This quantity
places a hard limit on our ability to compress the data. In information theory, this quantity is
called the entropy of a distribution P , and it is captured by the following equation:

H[P ] =
∑
j

−P (j) logP (j). (3.4.11)

One of the fundamental theorems of information theory states that in order to encode data drawn
randomly from the distribution P , we need at leastH[P ] “nats” to encode it. If you wonder what
a “nat” is, it is the equivalent of bit but when using a code with base e rather than one with base 2.
Thus, one nat is 1

log(2) ≈ 1.44 bit.

Surprisal

You might be wondering what compression has to do with prediction. Imagine that we have a
stream of data that we want to compress. If it is always easy for us to predict the next token, then
this data is easy to compress! Take the extreme example where every token in the stream always
takes the same value. That is a very boring data stream! And not only it is boring, but it is also
easy to predict. Because they are always the same, we do not have to transmit any information to
communicate the contents of the stream. Easy to predict, easy to compress.

However if we cannot perfectly predict every event, then we might sometimes be surprised. Our
surprise is greater when we assigned an event lower probability. Claude Shannon settled on
log 1

P (j) = − logP (j) to quantify one s̓ surprisal at observing an event j having assigned it a (sub-
jective) probability P (j). The entropy defined in (3.4.11) is then the expected surprisal when one
assigned the correct probabilities that truly match the data-generating process.

Cross-Entropy Revisited

So if entropy is level of surprise experienced by someonewho knows the true probability, then you
might be wondering, what is cross-entropy? The cross-entropy from P to Q, denoted H(P,Q), is
the expected surprisal of an observer with subjective probabilities Q upon seeing data that were
actually generated according to probabilities P . The lowest possible cross-entropy is achieved
when P = Q. In this case, the cross-entropy from P toQ isH(P, P ) = H(P ).

In short, we can think of the cross-entropy classification objective in two ways: (i) as maximizing
the likelihood of the observed data; and (ii) as minimizing our surprisal (and thus the number of
bits) required to communicate the labels.
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3.4.8 Model Prediction and Evaluation

After training the softmax regressionmodel, given any example features, we can predict the prob-
ability of each output class. Normally, we use the class with the highest predicted probability as
the output class. The prediction is correct if it is consistent with the actual class (label). In the next
part of the experiment, we will use accuracy to evaluate the model s̓ performance. This is equal to
the ratio between the number of correct predictions and the total number of predictions.

Summary

• The softmax operation takes a vector and maps it into probabilities.

• Softmax regression applies to classification problems. It uses the probability distribution of
the output class in the softmax operation.

• Cross-entropy is a good measure of the difference between two probability distributions. It
measures the number of bits needed to encode the data given our model.

Exercises

1. We can explore the connection between exponential families and the softmax in somemore
depth.

1. Compute the second derivative of the cross-entropy loss l(y, ŷ) for the softmax.

2. Compute the variance of the distribution given by softmax(o) and show that it matches
the second derivative computed above.

2. Assume that we have three classes which occur with equal probability, i.e., the probability
vector is (13 ,

1
3 ,

1
3).

1. What is the problem if we try to design a binary code for it?

2. Can you design a better code? Hint: what happens if we try to encode two independent
observations? What if we encode n observations jointly?

3. Softmax is a misnomer for the mapping introduced above (but everyone in deep learning
uses it). The real softmax is defined as RealSoftMax(a, b) = log(exp(a) + exp(b)).

1. Prove that RealSoftMax(a, b) > max(a, b).

2. Prove that this holds for λ−1RealSoftMax(λa, λb), provided that λ > 0.

3. Show that for λ→∞ we have λ−1RealSoftMax(λa, λb)→ max(a, b).

4. What does the soft-min look like?

5. Extend this to more than two numbers.

Discussions56
56 https://discuss.d2l.ai/t/46
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3.5 The Image Classification Dataset

One of the widely used dataset for image classification is the MNIST dataset (LeCun et al., 1998).
While it had a good run as a benchmark dataset, even simple models by today s̓ standards achieve
classification accuracyover 95%,making it unsuitable for distinguishingbetween strongermodels
and weaker ones. Today, MNIST serves as more of sanity checks than as a benchmark. To up the
ante just a bit, we will focus our discussion in the coming sections on the qualitatively similar, but
comparatively complex Fashion-MNIST dataset (Xiao et al., 2017), which was released in 2017.

%matplotlib inline
import sys
from mxnet import gluon
from d2l import mxnet as d2l

d2l.use_svg_display()

3.5.1 Reading the Dataset

We can download and read the Fashion-MNIST dataset into memory via the build-in functions in
the framework.

mnist_train = gluon.data.vision.FashionMNIST(train=True)
mnist_test = gluon.data.vision.FashionMNIST(train=False)

Fashion-MNIST consists of images from 10 categories, each represented by 6000 images in the
training dataset and by 1000 in the test dataset. A test dataset (or test set) is used for evaluating
model performance and not for training. Consequently the training set and the test set contain
60000 and 10000 images, respectively.

len(mnist_train), len(mnist_test)

(60000, 10000)

The height and width of each input image are both 28 pixels. Note that the dataset consists of
grayscale images, whose number of channels is 1. For brevity, throughout this book we store the
shape of any image with height h width w pixels as h× w or (h, w).

mnist_train[0][0].shape

(28, 28, 1)

The images in Fashion-MNIST are associated with the following categories: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. The following function converts
between numeric label indices and their names in text.

def get_fashion_mnist_labels(labels): #@save
"""Return text labels for the Fashion-MNIST dataset."""
text_labels = [

(continues on next page)
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't-shirt', 'trouser', 'pullover', 'dress', 'coat', 'sandal', 'shirt',
'sneaker', 'bag', 'ankle boot']

return [text_labels[int(i)] for i in labels]

We can now create a function to visualize these examples.

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save
"""Plot a list of images."""
figsize = (num_cols * scale, num_rows * scale)
_, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)
axes = axes.flatten()
for i, (ax, img) in enumerate(zip(axes, imgs)):

ax.imshow(img.asnumpy())
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
if titles:

ax.set_title(titles[i])
return axes

Here are the images and their corresponding labels (in text) for the first few examples in the train-
ing dataset.

X, y = mnist_train[:18]

print(X.shape)
show_images(X.squeeze(axis=-1), 2, 9, titles=get_fashion_mnist_labels(y));

(18, 28, 28, 1)

3.5.2 Reading a Minibatch

To make our life easier when reading from the training and test sets, we use the built-in data
iterator rather than creating one from scratch. Recall that at each iteration, a data loader reads a
minibatch of data with size batch_size each time. We also randomly shuffle the examples for the
training data iterator.

batch_size = 256

def get_dataloader_workers(): #@save
"""Use 4 processes to read the data except for Windows."""

(continues on next page)
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return 0 if sys.platform.startswith('win') else 4

# `ToTensor` converts the image data from uint8 to 32-bit floating point. It
# divides all numbers by 255 so that all pixel values are between 0 and 1
transformer = gluon.data.vision.transforms.ToTensor()
train_iter = gluon.data.DataLoader(mnist_train.transform_first(transformer),

batch_size, shuffle=True,
num_workers=get_dataloader_workers())

Let us look at the time it takes to read the training data.

timer = d2l.Timer()
for X, y in train_iter:

continue
f'{timer.stop():.2f} sec'

'1.89 sec'

3.5.3 Putting All Things Together

Now we define the load_data_fashion_mnist function that obtains and reads the Fashion-MNIST
dataset. It returns the data iterators for both the training set and validation set. In addition, it
accepts an optional argument to resize images to another shape.

def load_data_fashion_mnist(batch_size, resize=None): #@save
"""Download the Fashion-MNIST dataset and then load it into memory."""
dataset = gluon.data.vision
trans = [dataset.transforms.ToTensor()]
if resize:

trans.insert(0, dataset.transforms.Resize(resize))
trans = dataset.transforms.Compose(trans)
mnist_train = dataset.FashionMNIST(train=True).transform_first(trans)
mnist_test = dataset.FashionMNIST(train=False).transform_first(trans)
return (gluon.data.DataLoader(mnist_train, batch_size, shuffle=True,

num_workers=get_dataloader_workers()),
gluon.data.DataLoader(mnist_test, batch_size, shuffle=False,

num_workers=get_dataloader_workers()))

Below we test the image resizing feature of the load_data_fashion_mnist function by specifying
the resize argument.

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:

print(X.shape, X.dtype, y.shape, y.dtype)
break

(32, 1, 64, 64) <class 'numpy.float32'> (32,) <class 'numpy.int32'>

We are now ready to work with the Fashion-MNIST dataset in the sections that follow.
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Summary

• Fashion-MNIST is an apparel classification dataset consisting of images representing 10 cat-
egories. We will use this dataset in subsequent sections and chapters to evaluate various
classification algorithms.

• We store the shape of any image with height h width w pixels as h× w or (h, w).

• Data iterators are a key component for efficient performance. Rely on well-implemented
data iterators that exploit high-performance computing to avoid slowing down your training
loop.

Exercises

1. Does reducing the batch_size (for instance, to 1) affect the reading performance?

2. The data iterator performance is important. Do you think the current implementation is fast
enough? Explore various options to improve it.

3. Check out the framework s̓ online API documentation. Which other datasets are available?

Discussions57

3.6 Implementation of Softmax Regression from Scratch

Just as we implemented linear regression from scratch, we believe that softmax regression is sim-
ilarly fundamental and you ought to know the gory details of

how to implement it yourself. We will work with the Fashion-MNIST dataset, just introduced in
Section 3.5, setting up a data iterator with batch size 256.

from IPython import display
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.6.1 Initializing Model Parameters

As in our linear regression example, each example here will be represented by a fixed-length vec-
tor. Each example in the raw dataset is a 28×28 image. In this section, we will flatten each image,
treating them as vectors of length 784. In the future, we will talk about more sophisticated strate-
gies for exploiting the spatial structure in images, but for now we treat each pixel location as just
another feature.

Recall that in softmax regression, we have as many outputs as there are classes. Because our
dataset has 10 classes, ournetworkwill have anoutput dimensionof 10. Consequently, ourweights

57 https://discuss.d2l.ai/t/48
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will constitute a 784× 10matrix and the biases will constitute a 1× 10 row vector. As with linear
regression, we will initialize our weights W with Gaussian noise and our biases to take the initial
value 0.

num_inputs = 784
num_outputs = 10

W = np.random.normal(0, 0.01, (num_inputs, num_outputs))
b = np.zeros(num_outputs)
W.attach_grad()
b.attach_grad()

3.6.2 Defining the Softmax Operation

Before implementing the softmax regression model, let us briefly review how the sum operator
works along specific dimensions in a tensor, as discussed in Section 2.3.6 and Section 2.3.6. Given
a matrix X we can sum over all elements (by default) or only over elements in the same axis, i.e.,
the same column (axis 0) or the same row (axis 1). Note that if X is a tensor with shape (2, 3) andwe
sumover the columns, the result will be a vectorwith shape (3,). When invoking the sumoperator,
we can specify to keep the number of axes in the original tensor, rather than collapsing out the
dimension that we summed over. This will result in a two-dimensional tensor with shape (1, 3).

X = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdims=True), X.sum(1, keepdims=True)

(array([[5., 7., 9.]]),
array([[ 6.],

[15.]]))

Weare now ready to implement the softmax operation. Recall that softmax consists of three steps:
i) we exponentiate each term (using exp); ii) we sum over each row (we have one row per example
in the batch) to get the normalization constant for each example; iii) we divide each row by its
normalization constant, ensuring that the result sums to 1. Before looking at the code, let us
recall how this looks expressed as an equation:

softmax(X)ij =
exp(Xij)∑
k exp(Xik)

. (3.6.1)

The denominator, or normalization constant, is also sometimes called the partition function (and
its logarithm is called the log-partition function). The origins of that name are in statistical
physics58 where a related equation models the distribution over an ensemble of particles.

def softmax(X):
X_exp = np.exp(X)
partition = X_exp.sum(1, keepdims=True)
return X_exp / partition # The broadcasting mechanism is applied here

As you can see, for any random input, we turn each element into a non-negative number. More-
over, each row sums up to 1, as is required for a probability.

58 https://en.wikipedia.org/wiki/Partition_function_(statistical_mechanics)
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X = np.random.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

(array([[0.22376052, 0.06659239, 0.06583703, 0.29964197, 0.3441681 ],
[0.63209665, 0.03179282, 0.194987 , 0.09209415, 0.04902935]]),

array([1. , 0.99999994]))

Note that while this looks correct mathematically, we were a bit sloppy in our implementation
because we failed to take precautions against numerical overflow or underflow due to large or
very small elements of the matrix.

3.6.3 Defining the Model

Now thatwehavedefined the softmaxoperation,we can implement the softmax regressionmodel.
The below code defines how the input is mapped to the output through the network. Note that we
flatten each original image in the batch into a vector using the reshape function before passing
the data through our model.

def net(X):
return softmax(np.dot(X.reshape((-1, W.shape[0])), W) + b)

3.6.4 Defining the Loss Function

Next, we need to implement the cross-entropy loss function, as introduced in Section 3.4. This
may be the most common loss function in all of deep learning because, at the moment, classifi-
cation problems far outnumber regression problems.

Recall that cross-entropy takes the negative log-likelihood of the predicted probability assigned to
the true label. Rather than iterating over the predictions with a Python for-loop (which tends to
be inefficient), we can pick all elements by a single operator. Below, we create sample data y_hat
with 2 examples of predicted probabilities over 3 classes and their corresponding labels y. With y
weknow that in the first example the first class is the correct prediction and in the second example
the third class is the ground-truth. Using y as the indices of the probabilities in y_hat, we pick the
probability of the first class in the first example and the probability of the third class in the second
example.

y = np.array([0, 2])
y_hat = np.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

array([0.1, 0.5])

Now we can implement the cross-entropy loss function efficiently with just one line of code.

def cross_entropy(y_hat, y):
return -np.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)
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array([2.3025851, 0.6931472])

3.6.5 Classification Accuracy

Given the predicted probability distribution y_hat, we typically choose the class with the highest
predicted probability whenever we must output a hard prediction. Indeed, many applications
require thatwemake a choice. Gmailmust categorize an email into “Primary”, “Social”, “Updates”,
or “Forums”. It might estimate probabilities internally, but at the end of the day it has to choose
one among the classes.

When predictions are consistent with the label class y, they are correct. The classification ac-
curacy is the fraction of all predictions that are correct. Although it can be difficult to optimize
accuracy directly (it is not differentiable), it is often the performance measure that we care most
about, and we will nearly always report it when training classifiers.

To compute accuracy we do the following. First, if y_hat is a matrix, we assume that the second
dimension stores prediction scores for each class. We use argmax to obtain the predicted class by
the index for the largest entry in each row. Then we compare the predicted class with the ground-
truth y elementwise. Since the equality operator == is sensitive to data types, we convert y_hat s̓
data type to match that of y. The result is a tensor containing entries of 0 (false) and 1 (true).
Taking the sum yields the number of correct predictions.

def accuracy(y_hat, y): #@save
"""Compute the number of correct predictions."""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:

y_hat = y_hat.argmax(axis=1)
cmp = y_hat.astype(y.dtype) == y
return float(cmp.astype(y.dtype).sum())

We will continue to use the variables y_hat and y defined before as the predicted probability dis-
tributions and labels, respectively. We can see that the first example s̓ prediction class is 2 (the
largest element of the row is 0.6 with the index 2), which is inconsistent with the actual label, 0.
The second example s̓ prediction class is 2 (the largest element of the row is 0.5 with the index of
2), which is consistent with the actual label, 2. Therefore, the classification accuracy rate for these
two examples is 0.5.

accuracy(y_hat, y) / len(y)

0.5

Similarly, we can evaluate the accuracy for anymodel net on a dataset that is accessed via the data
iterator data_iter.

def evaluate_accuracy(net, data_iter): #@save
"""Compute the accuracy for a model on a dataset."""
metric = Accumulator(2) # No. of correct predictions, no. of predictions
for X, y in data_iter:

metric.add(accuracy(net(X), y), y.size)
return metric[0] / metric[1]
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Here Accumulator is a utility class to accumulate sums overmultiple variables. In the above eval-
uate_accuracy function, we create 2 variables in the Accumulator instance for storing both the
number of correct predictions and the number of predictions, respectively. Both will be accumu-
lated over time as we iterate over the dataset.

class Accumulator: #@save
"""For accumulating sums over `n` variables."""
def __init__(self, n):

self.data = [0.0] * n

def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]

def reset(self):
self.data = [0.0] * len(self.data)

def __getitem__(self, idx):
return self.data[idx]

Because we initialized the netmodel with random weights, the accuracy of this model should be
close to random guessing, i.e., 0.1 for 10 classes.

evaluate_accuracy(net, test_iter)

0.0811

3.6.6 Training

The training loop for softmax regression should look strikingly familiar if you read through our
implementation of linear regression in Section 3.2. Here we refactor the implementation tomake
it reusable. First, we define a function to train for one epoch. Note that updater is a general
function to update the model parameters, which accepts the batch size as an argument. It can be
either a wrapper of the d2l.sgd function or a framework s̓ built-in optimization function.

def train_epoch_ch3(net, train_iter, loss, updater): #@save
"""Train a model within one epoch (defined in Chapter 3)."""
# Sum of training loss, sum of training accuracy, no. of examples
metric = Accumulator(3)
if isinstance(updater, gluon.Trainer):

updater = updater.step
for X, y in train_iter:

# Compute gradients and update parameters
with autograd.record():

y_hat = net(X)
l = loss(y_hat, y)

l.backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.size)

# Return training loss and training accuracy
return metric[0] / metric[2], metric[1] / metric[2]

Before showing the implementation of the training function, we define a utility class that plot data
in animation. Again, it aims to simplify code in the rest of the book.
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class Animator: #@save
"""For plotting data in animation."""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,

ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):

# Incrementally plot multiple lines
if legend is None:

legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:

self.axes = [self.axes,]
# Use a lambda function to capture arguments
self.config_axes = lambda: d2l.set_axes(self.axes[

0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts

def add(self, x, y):
# Add multiple data points into the figure
if not hasattr(y, "__len__"):

y = [y]
n = len(y)
if not hasattr(x, "__len__"):

x = [x] * n
if not self.X:

self.X = [[] for _ in range(n)]
if not self.Y:

self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):

if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)

self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):

self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

The following training function then trains a model net on a training dataset accessed via
train_iter for multiple epochs, which is specified by num_epochs. At the end of each epoch, the
model is evaluated on a testing dataset accessed via test_iter. Wewill leverage the Animator class
to visualize the training progress.

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
"""Train a model (defined in Chapter 3)."""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],

legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):

train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))

train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss

(continues on next page)
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assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc

As an implementation from scratch, we use the minibatch stochastic gradient descent defined in
Section 3.2 to optimize the loss function of the model with a learning rate 0.1.

lr = 0.1

def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)

Now we train the model with 10 epochs. Note that both the number of epochs (num_epochs), and
learning rate (lr) are adjustable hyperparameters. By changing their values, we may be able to
increase the classification accuracy of the model.

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

3.6.7 Prediction

Now that training is complete, our model is ready to classify some images. Given a series of im-
ages, we will compare their actual labels (first line of text output) and the predictions from the
model (second line of text output).

def predict_ch3(net, test_iter, n=6): #@save
"""Predict labels (defined in Chapter 3)."""
for X, y in test_iter:

break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true + '\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)
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Summary

• With softmax regression, we can train models for multiclass classification.

• The training loop of softmax regression is very similar to that in linear regression: retrieve
and read data, define models and loss functions, then train models using optimization algo-
rithms. As you will soon find out, most common deep learningmodels have similar training
procedures.

Exercises

1. In this section, we directly implemented the softmax function based on the mathematical
definition of the softmax operation. What problems might this cause? Hint: try to calculate
the size of exp(50).

2. The function cross_entropy in this section was implemented according to the definition of
the cross-entropy loss function. What could be the problemwith this implementation? Hint:
consider the domain of the logarithm.

3. What solutions you can think of to fix the two problems above?

4. Is it always a good idea to return the most likely label? For example, would you do this for
medical diagnosis?

5. Assume that we want to use softmax regression to predict the next word based on some
features. What are some problems that might arise from a large vocabulary?

Discussions59

3.7 Concise Implementation of Softmax Regression

Just as high-level APIs of deep learning frameworks made it much easier to implement linear re-
gression in Section 3.3, we will find it similarly (or possibly more) convenient for implementing
classification models. Let us stick with the Fashion-MNIST dataset and keep the batch size at 256
as in Section 3.6.

from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

59 https://discuss.d2l.ai/t/50
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batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.7.1 Initializing Model Parameters

As mentioned in Section 3.4, the output layer of softmax regression is a fully-connected layer.
Therefore, to implement ourmodel, we just need to add one fully-connected layer with 10 outputs
to our Sequential. Again, here, the Sequential is not really necessary, but we might as well form
the habit since it will be ubiquitous when implementing deep models. Again, we initialize the
weights at random with zero mean and standard deviation 0.01.

net = nn.Sequential()
net.add(nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

3.7.2 Softmax Implementation Revisited

In the previous example of Section 3.6, we calculated our model s̓ output and then ran this output
through the cross-entropy loss. Mathematically, that is a perfectly reasonable thing to do. How-
ever, from a computational perspective, exponentiation can be a source of numerical stability
issues.

Recall that the softmax function calculates ŷj =
exp(oj)∑
k exp(ok) , where ŷj is the jth element of the

predicted probability distribution ŷ and oj is the jth element of the logits o. If some of the ok
are very large (i.e., very positive), then exp(ok) might be larger than the largest number we can
have for certain data types (i.e., overflow). This would make the denominator (and/or numerator)
inf (infinity) and we wind up encountering either 0, inf, or nan (not a number) for ŷj. In these
situations we do not get a well-defined return value for cross-entropy.

One trick to get around this is to first subtract max(ok) from all ok before proceeding with the
softmax calculation. You can see that this shifting of each ok by constant factor does not change
the return value of softmax:

ŷj =
exp(oj −max(ok)) exp(max(ok))∑
k exp(ok −max(ok)) exp(max(ok))

=
exp(oj −max(ok))∑
k exp(ok −max(ok))

.

(3.7.1)

After the subtraction and normalization step, it might be possible that some oj − max(ok) have
large negative values and thus that the corresponding exp(oj −max(ok)) will take values close to
zero. These might be rounded to zero due to finite precision (i.e., underflow), making ŷj zero and
giving us -inf for log(ŷj). A few steps down the road in backpropagation, wemight find ourselves
faced with a screenful of the dreaded nan results.

Fortunately, we are saved by the fact that even thoughwe are computing exponential functions, we
ultimately intend to take their log (when calculating the cross-entropy loss). By combining these
two operators softmax and cross-entropy together, we can escape the numerical stability issues
that might otherwise plague us during backpropagation. As shown in the equation below, we
avoid calculating exp(oj−max(ok)) and can use instead oj−max(ok) directly due to the canceling
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in log(exp(·)):

log (ŷj) = log
(

exp(oj −max(ok))∑
k exp(ok −max(ok))

)
= log (exp(oj −max(ok)))− log

(∑
k

exp(ok −max(ok))

)

= oj −max(ok)− log

(∑
k

exp(ok −max(ok))

)
.

(3.7.2)

We will want to keep the conventional softmax function handy in case we ever want to evaluate
the output probabilities by our model. But instead of passing softmax probabilities into our new
loss function, we will just pass the logits and compute the softmax and its log all at once inside the
cross-entropy loss function, which does smart things like the “LogSumExp trick”60.

loss = gluon.loss.SoftmaxCrossEntropyLoss()

3.7.3 Optimization Algorithm

Here, we use minibatch stochastic gradient descent with a learning rate of 0.1 as the optimiza-
tion algorithm. Note that this is the same as we applied in the linear regression example and it
illustrates the general applicability of the optimizers.

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1})

3.7.4 Training

Next we call the training function defined in Section 3.6 to train the model.

num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

60 https://en.wikipedia.org/wiki/LogSumExp
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As before, this algorithm converges to a solution that achieves a decent accuracy, albeit this time
with fewer lines of code than before.

Summary

• Using high-level APIs, we can implement softmax regression much more concisely.

• From a computational perspective, implementing softmax regression has intricacies. Note
that in many cases, a deep learning framework takes additional precautions beyond these
most well-known tricks to ensure numerical stability, saving us from evenmore pitfalls that
we would encounter if we tried to code all of our models from scratch in practice.

Exercises

1. Try adjusting the hyperparameters, such as the batch size, number of epochs, and learning
rate, to see what the results are.

2. Increase the number of epochs for training. Why might the test accuracy decrease after a
while? How could we fix this?

Discussions61

61 https://discuss.d2l.ai/t/52
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4 | Multilayer Perceptrons

In this chapter, we will introduce your first truly deep network. The simplest deep networks are
calledmultilayer perceptrons, and they consist ofmultiple layers of neurons each fully connected
to those in the layer below (from which they receive input) and those above (which they, in turn,
influence). When we train high-capacity models we run the risk of overfitting. Thus, we will
need to provide your first rigorous introduction to the notions of overfitting, underfitting, and
model selection. To help you combat these problems, wewill introduce regularization techniques
such as weight decay and dropout. We will also discuss issues relating to numerical stability and
parameter initialization that are key to successfully training deep networks. Throughout, we aim
to give you a firm grasp not just of the concepts but also of the practice of using deep networks.
At the end of this chapter, we apply what we have introduced so far to a real case: house price
prediction. Wepuntmatters relating to the computational performance, scalability, and efficiency
of our models to subsequent chapters.

4.1 Multilayer Perceptrons

In Chapter 3, we introduced softmax regression (Section 3.4), implementing the algorithm from
scratch (Section 3.6) and using high-level APIs (Section 3.7), and training classifiers to recognize 10
categories of clothing from low-resolution images. Along theway,we learnedhow towrangle data,
coerce our outputs into a valid probability distribution, apply an appropriate loss function, and
minimize it with respect to our model s̓ parameters. Now that we have mastered these mechanics
in the context of simple linear models, we can launch our exploration of deep neural networks,
the comparatively rich class of models with which this book is primarily concerned.

4.1.1 Hidden Layers

We have described the affine transformation in Section 3.1.1, which is a linear transformation
added by a bias. To begin, recall the model architecture corresponding to our softmax regression
example, illustrated in Fig. 3.4.1. This model mapped our inputs directly to our outputs via a
single affine transformation, followed by a softmax operation. If our labels truly were related to
our input data by an affine transformation, then this approach would be sufficient. But linearity
in affine transformations is a strong assumption.
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Linear Models May GoWrong

For example, linearity implies the weaker assumption of monotonicity: that any increase in our
feature must either always cause an increase in our model s̓ output (if the corresponding weight
is positive), or always cause a decrease in our model s̓ output (if the corresponding weight is neg-
ative). Sometimes that makes sense. For example, if we were trying to predict whether an indi-
vidual will repay a loan, we might reasonably imagine that holding all else equal, an applicant
with a higher income would always be more likely to repay than one with a lower income. While
monotonic, this relationship likely is not linearly associated with the probability of repayment.
An increase in income from 0 to 50 thousand likely corresponds to a bigger increase in likelihood
of repayment than an increase from 1 million to 1.05 million. One way to handle this might be
to preprocess our data such that linearity becomes more plausible, say, by using the logarithm of
income as our feature.

Note that we can easily come upwith examples that violatemonotonicity. Say for example that we
want to predict probability of death based on body temperature. For individuals with a body tem-
perature above 37°C (98.6°F), higher temperatures indicate greater risk. However, for individuals
with body temperatures below 37° C, higher temperatures indicate lower risk! In this case too, we
might resolve the problem with some clever preprocessing. Namely, we might use the distance
from 37°C as our feature.

But what about classifying images of cats and dogs? Should increasing the intensity of the pixel
at location (13, 17) always increase (or always decrease) the likelihood that the image depicts a
dog? Reliance on a linearmodel corresponds to the implicit assumption that the only requirement
for differentiating cats vs. dogs is to assess the brightness of individual pixels. This approach is
doomed to fail in a world where inverting an image preserves the category.

And yet despite the apparent absurdity of linearity here, as compared with our previous exam-
ples, it is less obvious that we could address the problem with a simple preprocessing fix. That
is because the significance of any pixel depends in complex ways on its context (the values of the
surrounding pixels). While there might exist a representation of our data that would take into
account the relevant interactions among our features, on top of which a linear model would be
suitable, we simply do not know how to calculate it by hand. With deep neural networks, we used
observational data to jointly learn both a representation via hidden layers and a linear predictor
that acts upon that representation.

Incorporating Hidden Layers

We can overcome these limitations of linear models and handle a more general class of functions
by incorporating one or more hidden layers. The easiest way to do this is to stack many fully-
connected layers on top of each other. Each layer feeds into the layer above it, until we generate
outputs. We can think of the firstL−1 layers as our representation and the final layer as our linear
predictor. This architecture is commonly called amultilayer perceptron, often abbreviated asMLP.
Below, we depict an MLP diagrammatically (Fig. 4.1.1).
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Fig. 4.1.1: An MLP with a hidden layer of 5 hidden units.

This MLP has 4 inputs, 3 outputs, and its hidden layer contains 5 hidden units. Since the input
layer does not involve any calculations, producing outputs with this network requires implement-
ing the computations for both the hidden and output layers; thus, the number of layers in this
MLP is 2. Note that these layers are both fully connected. Every input influences every neuron in
the hidden layer, and each of these in turn influences every neuron in the output layer. However,
as suggested by Section 3.4.3, the parameterization cost of MLPs with fully-connected layers can
be prohibitively high, which may motivate tradeoff between parameter saving and model effec-
tiveness even without changing the input or output size (Zhang et al., 2021).

From Linear to Nonlinear

As before, by thematrix X ∈ Rn×d, we denote a minibatch of n examples where each example has
d inputs (features). For a one-hidden-layer MLP whose hidden layer has h hidden units, denote
by H ∈ Rn×h the outputs of the hidden layer, which are hidden representations. In mathematics or
code, H is also known as a hidden-layer variable or a hidden variable. Since the hidden and output
layers are both fully connected, we have hidden-layer weightsW(1) ∈ Rd×h and biases b(1) ∈ R1×h

and output-layer weightsW(2) ∈ Rh×q and biases b(2) ∈ R1×q. Formally, we calculate the outputs
O ∈ Rn×q of the one-hidden-layer MLP as follows:

H = XW(1) + b(1),

O = HW(2) + b(2).
(4.1.1)

Note that after adding the hidden layer, our model now requires us to track and update additional
sets of parameters. So what have we gained in exchange? Youmight be surprised to find out that—
in themodel defined above—we gain nothing for our troubles! The reason is plain. The hidden units
above are given by an affine function of the inputs, and the outputs (pre-softmax) are just an affine
function of the hidden units. An affine function of an affine function is itself an affine function.
Moreover, our linear model was already capable of representing any affine function.

We can view the equivalence formally by proving that for any values of the weights, we can just
collapse out the hidden layer, yielding an equivalent single-layer model with parameters W =
W(1)W(2) and b = b(1)W(2) + b(2):

O = (XW(1) + b(1))W(2) + b(2) = XW(1)W(2) + b(1)W(2) + b(2) = XW+ b. (4.1.2)

In order to realize the potential of multilayer architectures, we need one more key ingredient:
a nonlinear activation function σ to be applied to each hidden unit following the affine transfor-
mation. The outputs of activation functions (e.g., σ(·)) are called activations. In general, with
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activation functions in place, it is no longer possible to collapse our MLP into a linear model:

H = σ(XW(1) + b(1)),

O = HW(2) + b(2).
(4.1.3)

Since each row in X corresponds to an example in the minibatch, with some abuse of notation,
we define the nonlinearity σ to apply to its inputs in a rowwise fashion, i.e., one example at a
time. Note that we used the notation for softmax in the same way to denote a rowwise operation
in Section 3.4.5. Often, as in this section, the activation functions that we apply to hidden layers
are not merely rowwise, but elementwise. That means that after computing the linear portion of
the layer, we can calculate each activation without looking at the values taken by the other hidden
units. This is true for most activation functions.

To buildmore generalMLPs, we can continue stacking such hidden layers, e.g.,H(1) = σ1(XW(1)+
b(1)) and H(2) = σ2(H(1)W(2) + b(2)), one atop another, yielding ever more expressive models.

Universal Approximators

MLPs can capture complex interactions amongour inputs via their hiddenneurons, whichdepend
on the values of each of the inputs. We can easily design hidden nodes to perform arbitrary com-
putation, for instance, basic logic operations on a pair of inputs. Moreover, for certain choices
of the activation function, it is widely known that MLPs are universal approximators. Even with
a single-hidden-layer network, given enough nodes (possibly absurdly many), and the right set of
weights, we can model any function, though actually learning that function is the hard part. You
might think of your neural network as being a bit like the C programming language. The language,
like any other modern language, is capable of expressing any computable program. But actually
coming up with a program that meets your specifications is the hard part.

Moreover, just because a single-hidden-layer network can learn any function does not mean that
you should try to solve all of your problems with single-hidden-layer networks. In fact, we can
approximate many functions much more compactly by using deeper (vs. wider) networks. We
will touch upon more rigorous arguments in subsequent chapters.

4.1.2 Activation Functions

Activation functions decide whether a neuron should be activated or not by calculating the
weighted sum and further adding bias with it. They are differentiable operators to transform
input signals to outputs, while most of them add non-linearity. Because activation functions are
fundamental to deep learning, let us briefly survey some common activation functions.

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

132 Chapter 4. Multilayer Perceptrons



ReLU Function

Themost popular choice, due to both simplicity of implementation and its good performance on a
variety of predictive tasks, is the rectified linear unit (ReLU). ReLU provides a very simple nonlinear
transformation. Given an element x, the function is defined as the maximum of that element and
0:

ReLU(x) = max(x, 0). (4.1.4)

Informally, the ReLU function retains only positive elements and discards all negative elements
by setting the corresponding activations to 0. To gain some intuition, we can plot the function. As
you can see, the activation function is piecewise linear.

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.relu(x)
d2l.plot(x, y, 'x', 'relu(x)', figsize=(5, 2.5))

When the input is negative, the derivative of the ReLU function is 0, andwhen the input is positive,
the derivative of the ReLU function is 1. Note that the ReLU function is not differentiable when the
input takes value precisely equal to 0. In these cases, we default to the left-hand-side derivative
and say that the derivative is 0 when the input is 0. We can get away with this because the input
may never actually be zero. There is an old adage that if subtle boundary conditions matter, we
are probably doing (real) mathematics, not engineering. That conventional wisdom may apply
here. We plot the derivative of the ReLU function plotted below.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of relu', figsize=(5, 2.5))
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The reason for using ReLU is that its derivatives are particularly well behaved: either they vanish
or they just let the argument through. This makes optimization better behaved and it mitigated
the well-documented problem of vanishing gradients that plagued previous versions of neural
networks (more on this later).

Note that there aremany variants to the ReLU function, including the parameterized ReLU (pReLU)
function (He et al., 2015). This variation adds a linear term to ReLU, so some information still gets
through, even when the argument is negative:

pReLU(x) = max(0, x) + αmin(0, x). (4.1.5)

Sigmoid Function

The sigmoid function transforms its inputs, for which values lie in the domainR, to outputs that lie
on the interval (0, 1). For that reason, the sigmoid is often called a squashing function: it squashes
any input in the range (-inf, inf) to some value in the range (0, 1):

sigmoid(x) =
1

1 + exp(−x)
. (4.1.6)

In the earliest neural networks, scientists were interested in modeling biological neurons which
either fire or do not fire. Thus the pioneers of this field, going all the way back to McCulloch and
Pitts, the inventors of the artificial neuron, focused on thresholding units. A thresholding activa-
tion takes value 0 when its input is below some threshold and value 1 when the input exceeds the
threshold.

When attention shifted to gradient based learning, the sigmoid function was a natural choice be-
cause it is a smooth, differentiable approximation to a thresholding unit. Sigmoids are still widely
used as activation functions on the output units, when we want to interpret the outputs as prob-
abilities for binary classification problems (you can think of the sigmoid as a special case of the
softmax). However, the sigmoid has mostly been replaced by the simpler and more easily train-
able ReLU for most use in hidden layers. In later chapters on recurrent neural networks, we will
describe architectures that leverage sigmoid units to control the flow of information across time.

Below, we plot the sigmoid function. Note that when the input is close to 0, the sigmoid function
approaches a linear transformation.
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with autograd.record():
y = npx.sigmoid(x)

d2l.plot(x, y, 'x', 'sigmoid(x)', figsize=(5, 2.5))

The derivative of the sigmoid function is given by the following equation:

d

dx
sigmoid(x) =

exp(−x)
(1 + exp(−x))2

= sigmoid(x) (1− sigmoid(x)) . (4.1.7)

The derivative of the sigmoid function is plotted below. Note that when the input is 0, the deriva-
tive of the sigmoid function reaches a maximum of 0.25. As the input diverges from 0 in either
direction, the derivative approaches 0.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))
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Tanh Function

Like the sigmoid function, the tanh (hyperbolic tangent) function also squashes its inputs, trans-
forming them into elements on the interval between -1 and 1:

tanh(x) =
1− exp(−2x)
1 + exp(−2x)

. (4.1.8)

Weplot the tanh function below. Note that as the input nears 0, the tanh function approaches a lin-
ear transformation. Although the shape of the function is similar to that of the sigmoid function,
the tanh function exhibits point symmetry about the origin of the coordinate system.

with autograd.record():
y = np.tanh(x)

d2l.plot(x, y, 'x', 'tanh(x)', figsize=(5, 2.5))

The derivative of the tanh function is:

d

dx
tanh(x) = 1− tanh2(x). (4.1.9)

The derivative of tanh function is plotted below. As the input nears 0, the derivative of the tanh
function approaches a maximum of 1. And as we saw with the sigmoid function, as the input
moves away from 0 in either direction, the derivative of the tanh function approaches 0.

y.backward()
d2l.plot(x, x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))
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In summary, we now know how to incorporate nonlinearities to build expressive multilayer neu-
ral network architectures. As a side note, your knowledge already puts you in command of a simi-
lar toolkit to a practitioner circa 1990. In some ways, you have an advantage over anyone working
in the 1990s, because you can leverage powerful open-source deep learning frameworks to build
models rapidly, using only a few lines of code. Previously, training these networks required re-
searchers to code up thousands of lines of C and Fortran.

Summary

• MLP adds one ormultiple fully-connected hidden layers between the output and input layers
and transforms the output of the hidden layer via an activation function.

• Commonly-used activation functions include the ReLU function, the sigmoid function, and
the tanh function.

Exercises

1. Compute the derivative of the pReLU activation function.

2. Show that an MLP using only ReLU (or pReLU) constructs a continuous piecewise linear
function.

3. Show that tanh(x) + 1 = 2 sigmoid(2x).

4. Assume that we have a nonlinearity that applies to one minibatch at a time. What kinds of
problems do you expect this to cause?

Discussions62
62 https://discuss.d2l.ai/t/90
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4.2 Implementation of Multilayer Perceptrons from Scratch

Now that we have characterized multilayer perceptrons (MLPs) mathematically, let us try to im-
plement one ourselves. To compare against our previous results achievedwith softmax regression
(Section 3.6), we will continue to work with the Fashion-MNIST image classification dataset (Sec-
tion 3.5).

from mxnet import gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

4.2.1 Initializing Model Parameters

Recall that Fashion-MNIST contains 10 classes, and that each image consists of a 28×28 = 784 grid
of grayscale pixel values. Again, we will disregard the spatial structure among the pixels for now,
so we can think of this as simply a classification dataset with 784 input features and 10 classes. To
begin, we will implement an MLP with one hidden layer and 256 hidden units. Note that we can
regardboth of these quantities as hyperparameters. Typically, we choose layerwidths in powers of
2, which tend to be computationally efficient because of how memory is allocated and addressed
in hardware.

Again, we will represent our parameters with several tensors. Note that for every layer, we must
keep track of one weight matrix and one bias vector. As always, we allocate memory for the gra-
dients of the loss with respect to these parameters.

num_inputs, num_outputs, num_hiddens = 784, 10, 256

W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens))
b1 = np.zeros(num_hiddens)
W2 = np.random.normal(scale=0.01, size=(num_hiddens, num_outputs))
b2 = np.zeros(num_outputs)
params = [W1, b1, W2, b2]

for param in params:
param.attach_grad()

4.2.2 Activation Function

To make sure we know how everything works, we will implement the ReLU activation ourselves
using the maximum function rather than invoking the built-in relu function directly.

def relu(X):
return np.maximum(X, 0)
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4.2.3 Model

Because we are disregarding spatial structure, we reshape each two-dimensional image into a flat
vector of length num_inputs. Finally, we implement our model with just a few lines of code.

def net(X):
X = X.reshape((-1, num_inputs))
H = relu(np.dot(X, W1) + b1)
return np.dot(H, W2) + b2

4.2.4 Loss Function

To ensure numerical stability, and because we already implemented the softmax function from
scratch (Section 3.6), we leverage the integrated function from high-level APIs for calculating the
softmax and cross-entropy loss. Recall our earlier discussion of these intricacies in Section 3.7.2.
We encourage the interested reader to examine the source code for the loss function to deepen
their knowledge of implementation details.

loss = gluon.loss.SoftmaxCrossEntropyLoss()

4.2.5 Training

Fortunately, the training loop for MLPs is exactly the same as for softmax regression. Leveraging
the d2l package again, we call the train_ch3 function (see Section 3.6), setting the number of
epochs to 10 and the learning rate to 0.1.

num_epochs, lr = 10, 0.1
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,

lambda batch_size: d2l.sgd(params, lr, batch_size))

To evaluate the learned model, we apply it on some test data.

d2l.predict_ch3(net, test_iter)
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Summary

• We saw that implementing a simple MLP is easy, even when done manually.

• However, with a large number of layers, implementingMLPs fromscratch can still getmessy
(e.g., naming and keeping track of our model s̓ parameters).

Exercises

1. Change the value of the hyperparameter num_hiddens and see how this hyperparameter in-
fluences your results. Determine the best value of this hyperparameter, keeping all others
constant.

2. Try adding an additional hidden layer to see how it affects the results.

3. How does changing the learning rate alter your results? Fixing the model architecture and
other hyperparameters (including number of epochs), what learning rate gives you the best
results?

4. What is the best result you can get by optimizing over all the hyperparameters (learning rate,
number of epochs, number of hidden layers, number of hidden units per layer) jointly?

5. Describe why it is much more challenging to deal with multiple hyperparameters.

6. What is the smartest strategy you can think of for structuring a search over multiple hyper-
parameters?

Discussions63

4.3 Concise Implementation of Multilayer Perceptrons

As you might expect, by relying on the high-level APIs, we can implement MLPs even more con-
cisely.

from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

63 https://discuss.d2l.ai/t/92
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4.3.1 Model

As compared with our concise implementation of softmax regression implementation (Section
3.7), the only difference is that we add two fully-connected layers (previously, we added one). The
first is our hidden layer, which contains 256 hidden units and applies the ReLU activation function.
The second is our output layer.

net = nn.Sequential()
net.add(nn.Dense(256, activation='relu'), nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))

The training loop is exactly the same as when we implemented softmax regression. This modu-
larity enables us to separate matters concerning the model architecture from orthogonal consid-
erations.

batch_size, lr, num_epochs = 256, 0.1, 10
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})

train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
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Summary

• Using high-level APIs, we can implement MLPs much more concisely.

• For the same classification problem, the implementation of an MLP is the same as that of
softmax regression except for additional hidden layers with activation functions.

Exercises

1. Try adding different numbers of hidden layers (youmay alsomodify the learning rate). What
setting works best?

2. Try out different activation functions. Which one works best?

3. Try different schemes for initializing the weights. What method works best?

Discussions64

4.4 Model Selection, Underfitting, and Overfitting

As machine learning scientists, our goal is to discover patterns. But how can we be sure that we
have truly discovered a general pattern and not simplymemorized our data? For example, imagine
that we wanted to hunt for patterns among genetic markers linking patients to their dementia
status, where the labels are drawn from the set {dementia,mild cognitive impairment,healthy}.
Because each persons̓ genes identify them uniquely (ignoring identical siblings), it is possible to
memorize the entire dataset.

We do not want our model to say “That’s Bob! I remember him! He has dementia!” The reason why
is simple. When we deploy the model in the future, we will encounter patients that the model has
never seen before. Our predictions will only be useful if our model has truly discovered a general
pattern.

To recapitulate more formally, our goal is to discover patterns that capture regularities in the un-
derlying population fromwhich our training set was drawn. If we are successful in this endeavor,
thenwe could successfully assess risk even for individuals that we have never encountered before.
This problem—how to discover patterns that generalize—is the fundamental problem of machine
learning.

The danger is that whenwe trainmodels, we access just a small sample of data. The largest public
image datasets contain roughly one million images. More often, we must learn from only thou-
sands or tens of thousands of data examples. In a large hospital system, wemight access hundreds
of thousands ofmedical records. Whenworkingwith finite samples, we run the risk that wemight
discover apparent associations that turn out not to hold up when we collect more data.

The phenomenon of fitting our training data more closely than we fit the underlying distribution
is called overfitting, and the techniques used to combat overfitting are called regularization. In
the previous sections, you might have observed this effect while experimenting with the Fashion-
MNIST dataset. If you altered themodel structure or the hyperparameters during the experiment,
you might have noticed that with enough neurons, layers, and training epochs, the model can
eventually reach perfect accuracy on the training set, even as the accuracy on test data deterio-
rates.

64 https://discuss.d2l.ai/t/94
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4.4.1 Training Error and Generalization Error

In order to discuss this phenomenon more formally, we need to differentiate between training
error and generalization error. The training error is the error of our model as calculated on the
training dataset, while generalization error is the expectation of ourmodel s̓ error were we to apply
it to an infinite stream of additional data examples drawn from the same underlying data distri-
bution as our original sample.

Problematically, we can never calculate the generalization error exactly. That is because the
stream of infinite data is an imaginary object. In practice, we must estimate the generalization
error by applying our model to an independent test set constituted of a random selection of data
examples that were withheld from our training set.

The following three thought experiments will help illustrate this situation better. Consider a col-
lege student trying to prepare for his final exam. A diligent student will strive to practice well and
test his abilities using exams from previous years. Nonetheless, doing well on past exams is no
guarantee that hewill excel when itmatters. For instance, the studentmight try to prepare by rote
learning the answers to the exam questions. This requires the student to memorize many things.
She might even remember the answers for past exams perfectly. Another student might prepare
by trying to understand the reasons for giving certain answers. In most cases, the latter student
will do much better.

Likewise, consider amodel that simply uses a lookup table to answer questions. If the set of allow-
able inputs is discrete and reasonably small, then perhaps after viewingmany training examples,
this approach would perform well. Still this model has no ability to do better than random guess-
ing when faced with examples that it has never seen before. In reality the input spaces are far too
large to memorize the answers corresponding to every conceivable input. For example, consider
the black and white 28 × 28 images. If each pixel can take one among 256 grayscale values, then
there are 256784 possible images. That means that there are far more low-resolution grayscale
thumbnail-sized images than there are atoms in the universe. Even if we could encounter such
data, we could never afford to store the lookup table.

Last, consider the problem of trying to classify the outcomes of coin tosses (class 0: heads, class
1: tails) based on some contextual features that might be available. Suppose that the coin is fair.
No matter what algorithm we come up with, the generalization error will always be 1

2 . However,
for most algorithms, we should expect our training error to be considerably lower, depending on
the luck of the draw, even if we did not have any features! Consider the dataset {0, 1, 1, 1, 0, 1}.
Our feature-less algorithm would have to fall back on always predicting the majority class, which
appears from our limited sample to be 1. In this case, the model that always predicts class 1 will
incur an error of 1

3 , considerably better than our generalization error. As we increase the amount
of data, the probability that the fraction of heads will deviate significantly from 1

2 diminishes, and
our training error would come to match the generalization error.
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Statistical Learning Theory

Since generalization is the fundamental problem inmachine learning, youmight not be surprised
to learn that many mathematicians and theorists have dedicated their lives to developing formal
theories to describe this phenomenon. In their eponymous theorem65, Glivenko and Cantelli de-
rived the rate at which the training error converges to the generalization error. In a series of semi-
nal papers, Vapnik and Chervonenkis66 extended this theory tomore general classes of functions.
This work laid the foundations of statistical learning theory.

In the standard supervised learning setting, which we have addressed up until now and will stick
with throughout most of this book, we assume that both the training data and the test data are
drawn independently from identical distributions. This is commonly called the i.i.d. assumption,
which means that the process that samples our data has no memory. In other words, the second
example drawn and the third drawn are nomore correlated than the second and the two-millionth
sample drawn.

Being a good machine learning scientist requires thinking critically, and already you should be
poking holes in this assumption, coming upwith common caseswhere the assumption fails. What
if we train a mortality risk predictor on data collected from patients at UCSF Medical Center, and
apply it on patients at Massachusetts General Hospital? These distributions are simply not identi-
cal. Moreover, draws might be correlated in time. What if we are classifying the topics of Tweets?
The news cycle would create temporal dependencies in the topics being discussed, violating any
assumptions of independence.

Sometimes we can get away with minor violations of the i.i.d. assumption and our models will
continue to work remarkably well. After all, nearly every real-world application involves at least
some minor violation of the i.i.d. assumption, and yet we have many useful tools for various ap-
plications such as face recognition, speech recognition, and language translation.

Other violations are sure to cause trouble. Imagine, for example, if we try to train a face recog-
nition system by training it exclusively on university students and then want to deploy it as a tool
formonitoring geriatrics in a nursing home population. This is unlikely to workwell since college
students tend to look considerably different from the elderly.

In subsequent chapters, we will discuss problems arising from violations of the i.i.d. assump-
tion. For now, even taking the i.i.d. assumption for granted, understanding generalization is a
formidable problem. Moreover, elucidating the precise theoretical foundations that might ex-
plain why deep neural networks generalize as well as they do continues to vex the greatest minds
in learning theory.

Whenwe train ourmodels, we attempt to search for a function that fits the training data as well as
possible. If the function is so flexible that it can catch on to spurious patterns just as easily as to
true associations, then it might perform too well without producing a model that generalizes well
to unseen data. This is precisely what we want to avoid or at least control. Many of the techniques
in deep learning are heuristics and tricks aimed at guarding against overfitting.

65 https://en.wikipedia.org/wiki/Glivenko%E2%80%93Cantelli_theorem
66 https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory
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Model Complexity

When we have simple models and abundant data, we expect the generalization error to resemble
the training error. When we work with more complex models and fewer examples, we expect the
training error to go down but the generalization gap to grow. What precisely constitutes model
complexity is a complex matter. Many factors govern whether a model will generalize well. For
example a model with more parameters might be considered more complex. A model whose
parameters can take a wider range of valuesmight bemore complex. Oftenwith neural networks,
we think of a model that takes more training iterations as more complex, and one subject to early
stopping (fewer training iterations) as less complex.

It can be difficult to compare the complexity among members of substantially different model
classes (say, decision trees vs. neural networks). For now, a simple rule of thumb is quite useful:
a model that can readily explain arbitrary facts is what statisticians view as complex, whereas one
that has only a limited expressive power but still manages to explain the data well is probably
closer to the truth. In philosophy, this is closely related to Popper s̓ criterion of falsifiability of a
scientific theory: a theory is good if it fits data and if there are specific tests that can be used to
disprove it. This is important since all statistical estimation is post hoc, i.e., we estimate after we
observe the facts, hence vulnerable to the associated fallacy. For now, we will put the philosophy
aside and stick to more tangible issues.

In this section, to give you some intuition, we will focus on a few factors that tend to influence the
generalizability of a model class:

1. The number of tunable parameters. When the number of tunable parameters, sometimes
called the degrees of freedom, is large, models tend to be more susceptible to overfitting.

2. The values taken by the parameters. Whenweights can take a wider range of values, models
can be more susceptible to overfitting.

3. The number of training examples. It is trivially easy to overfit a dataset containing only
one or two examples even if your model is simple. But overfitting a dataset with millions of
examples requires an extremely flexible model.

4.4.2 Model Selection

In machine learning, we usually select our final model after evaluating several candidate models.
This process is calledmodel selection. Sometimes themodels subject to comparison are fundamen-
tally different in nature (say, decision trees vs. linear models). At other times, we are comparing
members of the same class of models that have been trained with different hyperparameter set-
tings.

WithMLPs, for example,wemaywish to comparemodelswith different numbers of hidden layers,
different numbers of hidden units, and various choices of the activation functions applied to each
hidden layer. In order to determine thebest amongour candidatemodels, wewill typically employ
a validation dataset.
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Validation Dataset

In principle we should not touch our test set until after we have chosen all our hyperparameters.
Were we to use the test data in the model selection process, there is a risk that we might overfit
the test data. Then we would be in serious trouble. If we overfit our training data, there is always
the evaluation on test data to keep us honest. But if we overfit the test data, how would we ever
know?

Thus, we should never rely on the test data for model selection. And yet we cannot rely solely on
the training data for model selection either because we cannot estimate the generalization error
on the very data that we use to train the model.

In practical applications, the picture gets muddier. While ideally we would only touch the test
data once, to assess the very best model or to compare a small number of models to each other,
real-world test data is seldom discarded after just one use. We can seldom afford a new test set for
each round of experiments.

The common practice to address this problem is to split our data three ways, incorporating a vali-
dation dataset (or validation set) in addition to the training and test datasets. The result is a murky
practice where the boundaries between validation and test data are worryingly ambiguous. Un-
less explicitly stated otherwise, in the experiments in this book we are really working with what
should rightly be called training data and validation data, with no true test sets. Therefore, the
accuracy reported in each experiment of the book is really the validation accuracy and not a true
test set accuracy.

K-Fold Cross-Validation

When training data is scarce, we might not even be able to afford to hold out enough data to con-
stitute a proper validation set. One popular solution to this problem is to employ K-fold cross-
validation. Here, the original training data is split into K non-overlapping subsets. Then model
training and validation are executed K times, each time training on K − 1 subsets and validat-
ing on a different subset (the one not used for training in that round). Finally, the training and
validation errors are estimated by averaging over the results from theK experiments.

4.4.3 Underfitting or Overfitting?

When we compare the training and validation errors, we want to be mindful of two common situ-
ations. First, we want to watch out for cases when our training error and validation error are both
substantial but there is a little gap between them. If the model is unable to reduce the training
error, that could mean that our model is too simple (i.e., insufficiently expressive) to capture the
pattern that we are trying to model. Moreover, since the generalization gap between our train-
ing and validation errors is small, we have reason to believe that we could get away with a more
complex model. This phenomenon is known as underfitting.

On the other hand, as we discussed above, we want to watch out for the cases when our train-
ing error is significantly lower than our validation error, indicating severe overfitting. Note that
overfitting is not always a bad thing. With deep learning especially, it is well known that the best
predictive models often perform far better on training data than on holdout data. Ultimately, we
usually care more about the validation error than about the gap between the training and valida-
tion errors.
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Whether we overfit or underfit can depend both on the complexity of our model and the size of
the available training datasets, two topics that we discuss below.

Model Complexity

To illustrate some classical intuition about overfitting and model complexity, we give an example
using polynomials. Given training data consisting of a single feature x and a corresponding real-
valued label y, we try to find the polynomial of degree d

ŷ =
d∑

i=0

xiwi (4.4.1)

to estimate the labels y. This is just a linear regression problem where our features are given by
the powers of x, themodel s̓ weights are given bywi, and the bias is given byw0 since x0 = 1 for all
x. Since this is just a linear regression problem, we can use the squared error as our loss function.

A higher-order polynomial function is more complex than a lower-order polynomial function,
since the higher-order polynomial has more parameters and themodel functions̓ selection range
is wider. Fixing the training dataset, higher-order polynomial functions should always achieve
lower (at worst, equal) training error relative to lower degree polynomials. In fact, whenever the
data examples each have a distinct value of x, a polynomial function with degree equal to the
number of data examples can fit the training set perfectly. We visualize the relationship between
polynomial degree and underfitting vs. overfitting in Fig. 4.4.1.

Fig. 4.4.1: Influence of model complexity on underfitting and overfitting

Dataset Size

The other big consideration to bear in mind is the dataset size. Fixing our model, the fewer sam-
ples we have in the training dataset, themore likely (andmore severely) we are to encounter over-
fitting. As we increase the amount of training data, the generalization error typically decreases.
Moreover, in general, more data never hurt. For a fixed task and data distribution, there is typi-
cally a relationship between model complexity and dataset size. Given more data, we might prof-
itably attempt to fit a more complex model. Absent sufficient data, simpler models may be more
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difficult to beat. For many tasks, deep learning only outperforms linear models whenmany thou-
sands of training examples are available. In part, the current success of deep learning owes to
the current abundance of massive datasets due to Internet companies, cheap storage, connected
devices, and the broad digitization of the economy.

4.4.4 Polynomial Regression

We can now explore these concepts interactively by fitting polynomials to data.

import math
from mxnet import gluon, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

Generating the Dataset

First we need data. Given x, we will use the following cubic polynomial to generate the labels on
training and test data:

y = 5 + 1.2x− 3.4
x2

2!
+ 5.6

x3

3!
+ ϵ where ϵ ∼ N (0, 0.12). (4.4.2)

The noise term ϵ obeys a normal distribution with amean of 0 and a standard deviation of 0.1. For
optimization, we typically want to avoid very large values of gradients or losses. This is why the
features are rescaled from xi to xi

i! . It allows us to avoid very large values for large exponents i. We
will synthesize 100 samples each for the training set and test set.

max_degree = 20 # Maximum degree of the polynomial
n_train, n_test = 100, 100 # Training and test dataset sizes
true_w = np.zeros(max_degree) # Allocate lots of empty space
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])

features = np.random.normal(size=(n_train + n_test, 1))
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):

poly_features[:, i] /= math.gamma(i + 1) # `gamma(n)` = (n-1)!
# Shape of `labels`: (`n_train` + `n_test`,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

Again, monomials stored in poly_features are rescaled by the gamma function, where Γ(n) =
(n− 1)!. Take a look at the first 2 samples from the generated dataset. The value 1 is technically a
feature, namely the constant feature corresponding to the bias.

features[:2], poly_features[:2, :], labels[:2]
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(array([[-0.03716067],
[-1.1468065 ]]),

array([[ 1.0000000e+00, -3.7160669e-02, 6.9045764e-04, -8.5526226e-06,
7.9455290e-08, -5.9052235e-10, 3.6573678e-12, -1.9415747e-14,
9.0187767e-17, -3.7238198e-19, 1.3837962e-21, -4.6747992e-24,
1.4476556e-26, -4.1381425e-29, 1.0984010e-31, -2.7211542e-34,
6.3199942e-37, -1.3815009e-39, 2.8516424e-42, -5.6051939e-45],

[ 1.0000000e+00, -1.1468065e+00, 6.5758252e-01, -2.5137332e-01,
7.2069131e-02, -1.6529869e-02, 3.1594271e-03, -5.1760738e-04,
7.4199430e-05, -9.4547095e-06, 1.0842722e-06, -1.1304095e-07,
1.0803007e-08, -9.5299690e-10, 7.8064499e-11, -5.9683248e-12,
4.2778208e-13, -2.8857840e-14, 1.8385756e-15, -1.1097316e-16]]),

array([ 5.1432443 , -0.06415121]))

Training and Testing the Model

Let us first implement a function to evaluate the loss on a given dataset.

def evaluate_loss(net, data_iter, loss): #@save
"""Evaluate the loss of a model on the given dataset."""
metric = d2l.Accumulator(2) # Sum of losses, no. of examples
for X, y in data_iter:

l = loss(net(X), y)
metric.add(l.sum(), l.size)

return metric[0] / metric[1]

Now define the training function.

def train(train_features, test_features, train_labels, test_labels,
num_epochs=400):

loss = gluon.loss.L2Loss()
net = nn.Sequential()
# Switch off the bias since we already catered for it in the polynomial
# features
net.add(nn.Dense(1, use_bias=False))
net.initialize()
batch_size = min(10, train_labels.shape[0])
train_iter = d2l.load_array((train_features, train_labels), batch_size)
test_iter = d2l.load_array((test_features, test_labels), batch_size,

is_train=False)
trainer = gluon.Trainer(net.collect_params(), 'sgd',

{'learning_rate': 0.01})
animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',

xlim=[1, num_epochs], ylim=[1e-3, 1e2],
legend=['train', 'test'])

for epoch in range(num_epochs):
d2l.train_epoch_ch3(net, train_iter, loss, trainer)
if epoch == 0 or (epoch + 1) % 20 == 0:

animator.add(epoch + 1, (evaluate_loss(
net, train_iter, loss), evaluate_loss(net, test_iter, loss)))

print('weight:', net[0].weight.data().asnumpy())
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Third-Order Polynomial Function Fitting (Normal)

We will begin by first using a third-order polynomial function, which is the same order as that
of the data generation function. The results show that this model s̓ training and test losses can
be both effectively reduced. The learned model parameters are also close to the true values w =
[5, 1.2,−3.4, 5.6].

# Pick the first four dimensions, i.e., 1, x, x^2/2!, x^3/3! from the
# polynomial features
train(poly_features[:n_train, :4], poly_features[n_train:, :4],

labels[:n_train], labels[n_train:])

weight: [[ 5.019045 1.2219346 -3.4237804 5.5718646]]

Linear Function Fitting (Underfitting)

Let us take another look at linear function fitting. After the decline in early epochs, it becomes
difficult to further decrease this model s̓ training loss. After the last epoch iteration has been
completed, the training loss is still high. When used to fit nonlinear patterns (like the third-order
polynomial function here) linear models are liable to underfit.

# Pick the first two dimensions, i.e., 1, x, from the polynomial features
train(poly_features[:n_train, :2], poly_features[n_train:, :2],

labels[:n_train], labels[n_train:])

weight: [[2.6992648 4.2271123]]

150 Chapter 4. Multilayer Perceptrons



Higher-Order Polynomial Function Fitting (Overfitting)

Now let us try to train themodel using a polynomial of too high degree. Here, there are insufficient
data to learn that the higher-degree coefficients should have values close to zero. As a result, our
overly-complex model is so susceptible that it is being influenced by noise in the training data.
Though the training loss can be effectively reduced, the test loss is still much higher. It shows that
the complex model overfits the data.

# Pick all the dimensions from the polynomial features
train(poly_features[:n_train, :], poly_features[n_train:, :],

labels[:n_train], labels[n_train:], num_epochs=1500)

weight: [[ 4.992137 1.3060913 -3.3531141 5.1165624 -0.1113829 1.3031913
0.12666036 0.16659527 0.05126056 -0.02273984 0.00805709 -0.05167707
-0.02426345 -0.01502198 -0.0494136 0.06389865 -0.04761846 -0.04380166
-0.05188227 0.05655775]]

In the subsequent sections, wewill continue to discuss overfitting problems andmethods for deal-
ing with them, such as weight decay and dropout.
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Summary

• Since the generalization error cannot be estimated based on the training error, simply min-
imizing the training error will not necessarily mean a reduction in the generalization error.
Machine learning models need to be careful to safeguard against overfitting so as to mini-
mize the generalization error.

• A validation set can be used for model selection, provided that it is not used too liberally.

• Underfittingmeans that amodel is not able to reduce the training error. When training error
is much lower than validation error, there is overfitting.

• We should choose an appropriately complex model and avoid using insufficient training
samples.

Exercises

1. Can you solve the polynomial regression problem exactly? Hint: use linear algebra.

2. Consider model selection for polynomials:

1. Plot the training loss vs. model complexity (degree of the polynomial). What do you
observe? What degree of polynomial do you need to reduce the training loss to 0?

2. Plot the test loss in this case.

3. Generate the same plot as a function of the amount of data.

3. What happens if you drop the normalization (1/i!) of the polynomial features xi? Can you
fix this in some other way?

4. Can you ever expect to see zero generalization error?

Discussions67

4.5 Weight Decay

Now that we have characterized the problem of overfitting, we can introduce some standard tech-
niques for regularizing models. Recall that we can always mitigate overfitting by going out and
collecting more training data. That can be costly, time consuming, or entirely out of our control,
making it impossible in the short run. For now, we can assume that we already have as much
high-quality data as our resources permit and focus on regularization techniques.

Recall that in our polynomial regression example (Section 4.4) we could limit ourmodel s̓ capacity
simply by tweaking the degree of the fitted polynomial. Indeed, limiting the number of features
is a popular technique to mitigate overfitting. However, simply tossing aside features can be too
blunt an instrument for the job. Sticking with the polynomial regression example, consider what
might happen with high-dimensional inputs. The natural extensions of polynomials to multivari-
ate data are called monomials, which are simply products of powers of variables. The degree of a
monomial is the sum of the powers. For example, x21x2, and x3x

2
5 are both monomials of degree

3.
67 https://discuss.d2l.ai/t/96
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Note that the number of termswith degree d blows up rapidly as d grows larger. Given k variables,
the number of monomials of degree d (i.e., k multichoose d) is

(
k−1+d
k−1

)
. Even small changes in

degree, say from 2 to 3, dramatically increase the complexity of our model. Thus we often need a
more fine-grained tool for adjusting function complexity.

4.5.1 Norms andWeight Decay

Wehave described both theL2 normand theL1 norm, which are special cases of themore general
Lp norm in Section 2.3.10. Weight decay (commonly called L2 regularization), might be the most
widely-used technique for regularizing parametric machine learning models. The technique is
motivated by the basic intuition that among all functions f , the function f = 0 (assigning the
value 0 to all inputs) is in some sense the simplest, and that we can measure the complexity of a
function by its distance from zero. But how precisely should we measure the distance between
a function and zero? There is no single right answer. In fact, entire branches of mathematics,
including parts of functional analysis and the theory of Banach spaces, are devoted to answering
this issue.

One simple interpretation might be to measure the complexity of a linear function f(x) = w⊤x
by some norm of its weight vector, e.g., ∥w∥2. The most common method for ensuring a small
weight vector is to add its norm as a penalty term to the problem of minimizing the loss. Thus we
replace our original objective, minimizing the prediction loss on the training labels, with new objec-
tive, minimizing the sum of the prediction loss and the penalty term. Now, if our weight vector grows
too large, our learning algorithm might focus on minimizing the weight norm ∥w∥2 vs. minimiz-
ing the training error. That is exactly what we want. To illustrate things in code, let us revive our
previous example from Section 3.1 for linear regression. There, our loss was given by

L(w, b) =
1

n

n∑
i=1

1

2

(
w⊤x(i) + b− y(i)

)2
. (4.5.1)

Recall that x(i) are the features, y(i) are labels for all data examples i, and (w, b) are the weight
and bias parameters, respectively. To penalize the size of the weight vector, we must somehow
add ∥w∥2 to the loss function, but how should the model trade off the standard loss for this new
additive penalty? In practice, we characterize this tradeoff via the regularization constant λ, a non-
negative hyperparameter that we fit using validation data:

L(w, b) +
λ

2
∥w∥2, (4.5.2)

For λ = 0, we recover our original loss function. For λ > 0, we restrict the size of ∥w∥. We divide
by 2 by convention: when we take the derivative of a quadratic function, the 2 and 1/2 cancel out,
ensuring that the expression for theupdate looksnice and simple. The astute readermightwonder
why we work with the squared norm and not the standard norm (i.e., the Euclidean distance). We
do this for computational convenience. By squaring the L2 norm, we remove the square root,
leaving the sum of squares of each component of the weight vector. This makes the derivative of
the penalty easy to compute: the sum of derivatives equals the derivative of the sum.

Moreover, you might ask why we work with the L2 norm in the first place and not, say, the L1

norm. In fact, other choices are valid and popular throughout statistics. While L2-regularized
linear models constitute the classic ridge regression algorithm, L1-regularized linear regression is
a similarly fundamental model in statistics, which is popularly known as lasso regression.

One reason toworkwith theL2 norm is that it places an outsize penalty on large components of the
weight vector. This biases our learning algorithm towards models that distribute weight evenly
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across a larger number of features. In practice, this might make them more robust to measure-
ment error in a single variable. By contrast, L1 penalties lead to models that concentrate weights
on a small set of features by clearing the other weights to zero. This is called feature selection,
which may be desirable for other reasons.

Using the same notation in (3.1.10), the minibatch stochastic gradient descent updates for L2-
regularized regression follow:

w← (1− ηλ)w− η

|B|
∑
i∈B

x(i)
(
w⊤x(i) + b− y(i)

)
. (4.5.3)

As before, we updatew based on the amount by which our estimate differs from the observation.
However, we also shrink the size of w towards zero. That is why the method is sometimes called
“weight decay”: given the penalty termalone, our optimization algorithm decays theweight at each
step of training. In contrast to feature selection, weight decay offers us a continuous mechanism
for adjusting the complexity of a function. Smaller values of λ correspond to less constrained w,
whereas larger values of λ constrainwmore considerably.

Whether we include a corresponding bias penalty b2 can vary across implementations, and may
vary across layers of a neural network. Often, we do not regularize the bias term of a network s̓
output layer.

4.5.2 High-Dimensional Linear Regression

We can illustrate the benefits of weight decay through a simple synthetic example.

%matplotlib inline
from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

First, we generate some data as before

y = 0.05 +
d∑

i=1

0.01xi + ϵ where ϵ ∼ N (0, 0.012). (4.5.4)

We choose our label to be a linear function of our inputs, corrupted by Gaussian noise with zero
mean and standard deviation 0.01. Tomake the effects of overfitting pronounced, we can increase
the dimensionality of our problem to d = 200 and work with a small training set containing only
20 examples.

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = np.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)
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4.5.3 Implementation from Scratch

In the following, we will implement weight decay from scratch, simply by adding the squared L2

penalty to the original target function.

Initializing Model Parameters

First, we will define a function to randomly initialize our model parameters.

def init_params():
w = np.random.normal(scale=1, size=(num_inputs, 1))
b = np.zeros(1)
w.attach_grad()
b.attach_grad()
return [w, b]

DefiningL2 Norm Penalty

Perhaps the most convenient way to implement this penalty is to square all terms in place and
sum them up.

def l2_penalty(w):
return (w**2).sum() / 2

Defining the Training Loop

The following code fits a model on the training set and evaluates it on the test set. The linear
network and the squared loss have not changed since Chapter 3, so we will just import them via
d2l.linreg and d2l.squared_loss. The only change here is that our loss now includes the penalty
term.

def train(lambd):
w, b = init_params()
net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
num_epochs, lr = 100, 0.003
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',

xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):

for X, y in train_iter:
with autograd.record():

# The L2 norm penalty term has been added, and broadcasting
# makes `l2_penalty(w)` a vector whose length is `batch_size`
l = loss(net(X), y) + lambd * l2_penalty(w)

l.backward()
d2l.sgd([w, b], lr, batch_size)

if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),

d2l.evaluate_loss(net, test_iter, loss)))
print('L2 norm of w:', np.linalg.norm(w))
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Training without Regularization

We now run this code with lambd = 0, disabling weight decay. Note that we overfit badly, decreas-
ing the training error but not the test error—a textbook case of overfitting.

train(lambd=0)

L2 norm of w: 13.259389

UsingWeight Decay

Below, we run with substantial weight decay. Note that the training error increases but the test
error decreases. This is precisely the effect we expect from regularization.

train(lambd=3)

L2 norm of w: 0.38248762
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4.5.4 Concise Implementation

Because weight decay is ubiquitous in neural network optimization, the deep learning framework
makes it especially convenient, integrating weight decay into the optimization algorithm itself for
easy use in combinationwith any loss function. Moreover, this integration serves a computational
benefit, allowing implementation tricks to add weight decay to the algorithm, without any addi-
tional computational overhead. Since the weight decay portion of the update depends only on the
current value of each parameter, the optimizer must touch each parameter once anyway.

In the following code, we specify the weight decay hyperparameter directly through wd when in-
stantiating our Trainer. By default, Gluon decays both weights and biases simultaneously. Note
that the hyperparameter wdwill bemultiplied by wd_multwhenupdatingmodel parameters. Thus,
if we set wd_mult to zero, the bias parameter b will not decay.

def train_concise(wd):
net = nn.Sequential()
net.add(nn.Dense(1))
net.initialize(init.Normal(sigma=1))
loss = gluon.loss.L2Loss()
num_epochs, lr = 100, 0.003
trainer = gluon.Trainer(net.collect_params(), 'sgd', {

'learning_rate': lr,
'wd': wd})

# The bias parameter has not decayed. Bias names generally end with "bias"
net.collect_params('.*bias').setattr('wd_mult', 0)
animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',

xlim=[5, num_epochs], legend=['train', 'test'])
for epoch in range(num_epochs):

for X, y in train_iter:
with autograd.record():

l = loss(net(X), y)
l.backward()
trainer.step(batch_size)

if (epoch + 1) % 5 == 0:
animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),

d2l.evaluate_loss(net, test_iter, loss)))
print('L2 norm of w:', np.linalg.norm(net[0].weight.data()))

The plots look identical to thosewhenwe implementedweight decay from scratch. However, they
run appreciably faster and are easier to implement, a benefit that will become more pronounced
for larger problems.

train_concise(0)

L2 norm of w: 15.014068
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train_concise(3)

L2 norm of w: 0.33991417

So far, we only touched upon one notion of what constitutes a simple linear function. Moreover,
what constitutes a simple nonlinear function can be an even more complex question. For in-
stance, reproducing kernel Hilbert space (RKHS)68 allows one to apply tools introduced for lin-
ear functions in a nonlinear context. Unfortunately, RKHS-based algorithms tend to scale poorly
to large, high-dimensional data. In this book we will default to the simple heuristic of applying
weight decay on all layers of a deep network.

68 https://en.wikipedia.org/wiki/Reproducing_kernel_Hilbert_space
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Summary

• Regularization is a common method for dealing with overfitting. It adds a penalty term to
the loss function on the training set to reduce the complexity of the learned model.

• One particular choice for keeping themodel simple isweight decay using anL2 penalty. This
leads to weight decay in the update steps of the learning algorithm.

• The weight decay functionality is provided in optimizers from deep learning frameworks.

• Different sets of parameters can have different update behaviors within the same training
loop.

Exercises

1. Experiment with the value of λ in the estimation problem in this section. Plot training and
test accuracy as a function of λ. What do you observe?

2. Use a validation set to find the optimal value of λ. Is it really the optimal value? Does this
matter?

3. What would the update equations look like if instead of ∥w∥2 we used
∑

i |wi| as our penalty
of choice (L1 regularization)?

4. We know that ∥w∥2 = w⊤w. Can you find a similar equation for matrices (see the Frobenius
norm in Section 2.3.10)?

5. Review the relationship between training error and generalization error. In addition to
weight decay, increased training, and the use of a model of suitable complexity, what other
ways can you think of to deal with overfitting?

6. In Bayesian statistics we use the product of prior and likelihood to arrive at a posterior via
P (w | x) ∝ P (x | w)P (w). How can you identify P (w) with regularization?

Discussions69

4.6 Dropout

In Section 4.5, we introduced the classical approach to regularizing statistical models by penal-
izing the L2 norm of the weights. In probabilistic terms, we could justify this technique by ar-
guing that we have assumed a prior belief that weights take values from a Gaussian distribution
with mean zero. More intuitively, we might argue that we encouraged the model to spread out its
weights among many features rather than depending too much on a small number of potentially
spurious associations.

69 https://discuss.d2l.ai/t/98
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4.6.1 Overfitting Revisited

Faced with more features than examples, linear models tend to overfit. But given more examples
than features, we can generally count on linearmodels not to overfit. Unfortunately, the reliability
with which linear models generalize comes at a cost. Naively applied, linear models do not take
into account interactions among features. For every feature, a linear model must assign either a
positive or a negative weight, ignoring context.

In traditional texts, this fundamental tension between generalizability and flexibility is described
as the bias-variance tradeoff. Linear models have high bias: they can only represent a small class
of functions. However, these models have low variance: they give similar results across different
random samples of the data.

Deep neural networks inhabit the opposite end of the bias-variance spectrum. Unlike linearmod-
els, neural networks are not confined to looking at each feature individually. They can learn in-
teractions among groups of features. For example, they might infer that “Nigeria” and “Western
Union” appearing together in an email indicates spam but that separately they do not.

Even when we have far more examples than features, deep neural networks are capable of over-
fitting. In 2017, a group of researchers demonstrated the extreme flexibility of neural networks by
training deep nets on randomly-labeled images. Despite the absence of any true pattern linking
the inputs to the outputs, they found that the neural network optimized by stochastic gradient de-
scent could label every image in the training set perfectly. Consider what this means. If the labels
are assigned uniformly at random and there are 10 classes, then no classifier can do better than
10% accuracy on holdout data. The generalization gap here is a whopping 90%. If our models are
so expressive that they can overfit this badly, then when should we expect them not to overfit?

The mathematical foundations for the puzzling generalization properties of deep networks re-
main open research questions, and we encourage the theoretically-oriented reader to dig deeper
into the topic. For now, we turn to the investigation of practical tools that tend to empirically
improve the generalization of deep nets.

4.6.2 Robustness through Perturbations

Let us think briefly about what we expect from a good predictivemodel. Wewant it to peformwell
on unseen data. Classical generalization theory suggests that to close the gap between train and
test performance, we should aim for a simple model. Simplicity can come in the form of a small
number of dimensions. We explored this when discussing themonomial basis functions of linear
models in Section 4.4. Additionally, as we saw when discussing weight decay (L2 regularization)
in Section 4.5, the (inverse) normof the parameters also represents a usefulmeasure of simplicity.
Another useful notion of simplicity is smoothness, i.e., that the function should not be sensitive to
small changes to its inputs. For instance, when we classify images, we would expect that adding
some random noise to the pixels should be mostly harmless.

In 1995, Christopher Bishop formalized this idea when he proved that training with input noise is
equivalent to Tikhonov regularization (Bishop, 1995). This work drew a clear mathematical con-
nection between the requirement that a function be smooth (and thus simple), and the require-
ment that it be resilient to perturbations in the input.

Then, in 2014, Srivastava et al. (Srivastava et al., 2014) developed a clever idea for how to apply
Bishops̓ idea to the internal layers of a network, too. Namely, they proposed to inject noise into
each layer of the network before calculating the subsequent layer during training. They realized
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that when training a deep network with many layers, injecting noise enforces smoothness just on
the input-output mapping.

Their idea, called dropout, involves injecting noise while computing each internal layer during
forward propagation, and it has become a standard technique for training neural networks. The
method is called dropout because we literally drop out some neurons during training. Throughout
training, on each iteration, standard dropout consists of zeroing out some fraction of the nodes in
each layer before calculating the subsequent layer.

To be clear, we are imposing our own narrative with the link to Bishop. The original paper on
dropout offers intuition through a surprising analogy to sexual reproduction. The authors argue
that neural network overfitting is characterized by a state in which each layer relies on a specifc
pattern of activations in the previous layer, calling this condition co-adaptation. Dropout, they
claim, breaks up co-adaptation just as sexual reproduction is argued to break up co-adapted genes.

The key challenge then is how to inject this noise. One idea is to inject the noise in an unbiased
manner so that the expected value of each layer—while fixing the others—equals to the value it
would have taken absent noise.

In Bishops̓ work, he added Gaussian noise to the inputs to a linear model. At each training iter-
ation, he added noise sampled from a distribution with mean zero ϵ ∼ N (0, σ2) to the input x,
yielding a perturbed point x′ = x+ ϵ. In expectation, E[x′] = x.

In standard dropout regularization, one debiases each layer by normalizing by the fraction of
nodes that were retained (not dropped out). In other words, with dropout probability p, each inter-
mediate activation h is replaced by a random variable h′ as follows:

h′ =

{
0 with probability p
h

1−p otherwise
(4.6.1)

By design, the expectation remains unchanged, i.e., E[h′] = h.

4.6.3 Dropout in Practice

Recall the MLP with a hidden layer and 5 hidden units in Fig. 4.1.1. When we apply dropout to
a hidden layer, zeroing out each hidden unit with probability p, the result can be viewed as a
network containing only a subset of the original neurons. In Fig. 4.6.1, h2 and h5 are removed.
Consequently, the calculation of the outputs no longer depends on h2 or h5 and their respective
gradient also vanishes when performing backpropagation. In this way, the calculation of the out-
put layer cannot be overly dependent on any one element of h1, . . . , h5.
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Fig. 4.6.1: MLP before and after dropout.

Typically, we disable dropout at test time. Given a trained model and a new example, we do not
drop out any nodes and thus do not need to normalize. However, there are some exceptions: some
researchers use dropout at test time as a heuristic for estimating the uncertainty of neural network
predictions: if the predictions agree across many different dropout masks, then wemight say that
the network is more confident.

4.6.4 Implementation from Scratch

To implement the dropout function for a single layer, we must draw as many samples from a
Bernoulli (binary) random variable as our layer has dimensions, where the random variable takes
value 1 (keep) with probability 1 − p and 0 (drop) with probability p. One easy way to implement
this is to first draw samples from the uniform distribution U [0, 1]. Then we can keep those nodes
for which the corresponding sample is greater than p, dropping the rest.

In the following code, we implement a dropout_layer function that drops out the elements in the
tensor input Xwith probability dropout, rescaling the remainder as described above: dividing the
survivors by 1.0-dropout.

from mxnet import autograd, gluon, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# In this case, all elements are dropped out
if dropout == 1:

return np.zeros_like(X)
# In this case, all elements are kept
if dropout == 0:

return X
mask = np.random.uniform(0, 1, X.shape) > dropout
return mask.astype(np.float32) * X / (1.0 - dropout)

We can test out the dropout_layer function on a few examples. In the following lines of code, we
pass our input X through the dropout operation, with probabilities 0, 0.5, and 1, respectively.
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X = np.arange(16).reshape(2, 8)
print(dropout_layer(X, 0))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1))

[[ 0. 1. 2. 3. 4. 5. 6. 7.]
[ 8. 9. 10. 11. 12. 13. 14. 15.]]
[[ 0. 2. 4. 6. 8. 10. 12. 14.]
[ 0. 18. 20. 0. 0. 0. 28. 0.]]
[[0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0.]]

Defining Model Parameters

Again, weworkwith the Fashion-MNIST dataset introduced in Section 3.5. We define anMLPwith
two hidden layers containing 256 units each.

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

W1 = np.random.normal(scale=0.01, size=(num_inputs, num_hiddens1))
b1 = np.zeros(num_hiddens1)
W2 = np.random.normal(scale=0.01, size=(num_hiddens1, num_hiddens2))
b2 = np.zeros(num_hiddens2)
W3 = np.random.normal(scale=0.01, size=(num_hiddens2, num_outputs))
b3 = np.zeros(num_outputs)

params = [W1, b1, W2, b2, W3, b3]
for param in params:

param.attach_grad()

Defining the Model

Themodel below applies dropout to the output of each hidden layer (following the activation func-
tion). We can set dropout probabilities for each layer separately. A common trend is to set a lower
dropout probability closer to the input layer. Below we set it to 0.2 and 0.5 for the first and second
hidden layers, respectively. We ensure that dropout is only active during training.

dropout1, dropout2 = 0.2, 0.5

def net(X):
X = X.reshape(-1, num_inputs)
H1 = npx.relu(np.dot(X, W1) + b1)
# Use dropout only when training the model
if autograd.is_training():

# Add a dropout layer after the first fully connected layer
H1 = dropout_layer(H1, dropout1)

H2 = npx.relu(np.dot(H1, W2) + b2)
if autograd.is_training():

# Add a dropout layer after the second fully connected layer
H2 = dropout_layer(H2, dropout2)

return np.dot(H2, W3) + b3
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Training and Testing

This is similar to the training and testing of MLPs described previously.

num_epochs, lr, batch_size = 10, 0.5, 256
loss = gluon.loss.SoftmaxCrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs,

lambda batch_size: d2l.sgd(params, lr, batch_size))

4.6.5 Concise Implementation

With high-level APIs, all we need to do is add a Dropout layer after each fully-connected layer,
passing in the dropout probability as the only argument to its constructor. During training, the
Dropout layer will randomly drop out outputs of the previous layer (or equivalently, the inputs to
the subsequent layer) according to the specified dropout probability. When not in training mode,
the Dropout layer simply passes the data through during testing.

net = nn.Sequential()
net.add(

nn.Dense(256, activation="relu"),
# Add a dropout layer after the first fully connected layer
nn.Dropout(dropout1), nn.Dense(256, activation="relu"),
# Add a dropout layer after the second fully connected layer
nn.Dropout(dropout2), nn.Dense(10))

net.initialize(init.Normal(sigma=0.01))

Next, we train and test the model.

trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)
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Summary

• Beyond controlling the number of dimensions and the size of the weight vector, dropout is
yet another tool to avoid overfitting. Often they are used jointly.

• Dropout replaces an activation h with a random variable with expected value h.

• Dropout is only used during training.

Exercises

1. What happens if you change the dropout probabilities for the first and second layers? In
particular, what happens if you switch the ones for both layers? Design an experiment to
answer these questions, describe your results quantitatively, and summarize the qualitative
takeaways.

2. Increase the number of epochs and compare the results obtained when using dropout with
those when not using it.

3. What is the variance of the activations in each hidden layer when dropout is and is not ap-
plied? Draw a plot to show how this quantity evolves over time for both models.

4. Why is dropout not typically used at test time?

5. Using the model in this section as an example, compare the effects of using dropout and
weight decay. What happens when dropout and weight decay are used at the same time?
Are the results additive? Are there diminished returns (or worse)? Do they cancel each other
out?

6. What happens if we apply dropout to the individual weights of the weightmatrix rather than
the activations?

7. Invent another technique for injecting random noise at each layer that is different from the
standard dropout technique. Can you develop a method that outperforms dropout on the
Fashion-MNIST dataset (for a fixed architecture)?

Discussions70
70 https://discuss.d2l.ai/t/100
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4.7 Forward Propagation, Backward Propagation, and Computational
Graphs

So far, we have trained our models with minibatch stochastic gradient descent. However, when
we implemented the algorithm, we only worried about the calculations involved in forward prop-
agation through the model. When it came time to calculate the gradients, we just invoked the
backpropagation function provided by the deep learning framework.

The automatic calculation of gradients (automatic differentiation) profoundly simplifies the im-
plementation of deep learning algorithms. Before automatic differentiation, even small changes
to complicated models required recalculating complicated derivatives by hand. Surprisingly of-
ten, academic papers had to allocate numerous pages to deriving update rules. While we must
continue to rely on automatic differentiation so we can focus on the interesting parts, you ought
to know how these gradients are calculated under the hood if you want to go beyond a shallow
understanding of deep learning.

In this section, we take a deep dive into the details of backward propagation (more commonly called
backpropagation). To convey some insight for both the techniques and their implementations, we
rely on some basic mathematics and computational graphs. To start, we focus our exposition on
a one-hidden-layer MLP with weight decay (L2 regularization).

4.7.1 Forward Propagation

Forward propagation (or forward pass) refers to the calculation and storage of intermediate variables
(including outputs) for a neural network in order from the input layer to the output layer. We now
work step-by-step through the mechanics of a neural network with one hidden layer. This may
seem tedious but in the eternal words of funk virtuoso James Brown, youmust “pay the cost to be
the boss”.

For the sake of simplicity, let us assume that the input example is x ∈ Rd and that our hidden layer
does not include a bias term. Here the intermediate variable is:

z = W(1)x, (4.7.1)

where W(1) ∈ Rh×d is the weight parameter of the hidden layer. After running the intermediate
variable z ∈ Rh through the activation function ϕwe obtain our hidden activation vector of length
h,

h = ϕ(z). (4.7.2)

Thehidden variableh is also an intermediate variable. Assuming that theparameters of the output
layer only possess a weight of W(2) ∈ Rq×h, we can obtain an output layer variable with a vector
of length q:

o = W(2)h. (4.7.3)

Assuming that the loss function is l and the example label is y, we can then calculate the loss term
for a single data example,

L = l(o, y). (4.7.4)
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According to the definition of L2 regularization, given the hyperparameter λ, the regularization
term is

s =
λ

2

(
∥W(1)∥2F + ∥W(2)∥2F

)
, (4.7.5)

where the Frobenius norm of the matrix is simply the L2 norm applied after flattening the matrix
into a vector. Finally, the model s̓ regularized loss on a given data example is:

J = L+ s. (4.7.6)

We refer to J as the objective function in the following discussion.

4.7.2 Computational Graph of Forward Propagation

Plotting computational graphs helps us visualize the dependencies of operators and variables
within the calculation. Fig. 4.7.1 contains the graph associated with the simple network described
above, where squares denote variables and circles denote operators. The lower-left corner signi-
fies the input and the upper-right corner is the output. Notice that the directions of the arrows
(which illustrate data flow) are primarily rightward and upward.

Fig. 4.7.1: Computational graph of forward propagation.

4.7.3 Backpropagation

Backpropagation refers to the method of calculating the gradient of neural network parameters.
In short, the method traverses the network in reverse order, from the output to the input layer,
according to the chain rule from calculus. The algorithm stores any intermediate variables (partial
derivatives) requiredwhile calculating the gradientwith respect to someparameters. Assume that
we have functions Y = f(X) and Z = g(Y), in which the input and the output X, Y, Z are tensors of
arbitrary shapes. By using the chain rule, we can compute the derivative of Zwith respect to X via

∂Z
∂X

= prod
(
∂Z
∂Y

,
∂Y
∂X

)
. (4.7.7)

Here we use the prod operator to multiply its arguments after the necessary operations, such as
transposition and swapping input positions, have been carried out. For vectors, this is straight-
forward: it is simply matrix-matrix multiplication. For higher dimensional tensors, we use the
appropriate counterpart. The operator prod hides all the notation overhead.

Recall that the parameters of the simple network with one hidden layer, whose computational
graph is in Fig. 4.7.1, areW(1) andW(2). The objective of backpropagation is to calculate the gra-
dients ∂J/∂W(1) and ∂J/∂W(2). To accomplish this, we apply the chain rule and calculate, in turn,
the gradient of each intermediate variable and parameter. The order of calculations are reversed
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relative to those performed in forward propagation, sincewe need to start with the outcome of the
computational graph and work our way towards the parameters. The first step is to calculate the
gradients of the objective function J = L+swith respect to the loss termL and the regularization
term s.

∂J

∂L
= 1 and

∂J

∂s
= 1. (4.7.8)

Next, we compute the gradient of the objective functionwith respect to variable of the output layer
o according to the chain rule:

∂J

∂o
= prod

(
∂J

∂L
,
∂L

∂o

)
=

∂L

∂o
∈ Rq. (4.7.9)

Next, we calculate the gradients of the regularization term with respect to both parameters:

∂s

∂W(1)
= λW(1) and

∂s

∂W(2)
= λW(2). (4.7.10)

Now we are able to calculate the gradient ∂J/∂W(2) ∈ Rq×h of the model parameters closest to
the output layer. Using the chain rule yields:

∂J

∂W(2)
= prod

(
∂J

∂o
,

∂o
∂W(2)

)
+ prod

(
∂J

∂s
,

∂s

∂W(2)

)
=

∂J

∂o
h⊤ + λW(2). (4.7.11)

To obtain the gradient with respect toW(1) we need to continue backpropagation along the output
layer to the hidden layer. The gradient with respect to the hidden layer s̓ outputs ∂J/∂h ∈ Rh is
given by

∂J

∂h
= prod

(
∂J

∂o
,
∂o
∂h

)
= W(2)⊤∂J

∂o
. (4.7.12)

Since the activation function ϕ applies elementwise, calculating the gradient ∂J/∂z ∈ Rh of the
intermediate variable z requires that we use the elementwise multiplication operator, which we
denote by⊙:

∂J

∂z
= prod

(
∂J

∂h
,
∂h
∂z

)
=

∂J

∂h
⊙ ϕ′ (z) . (4.7.13)

Finally, we can obtain the gradient ∂J/∂W(1) ∈ Rh×d of the model parameters closest to the input
layer. According to the chain rule, we get

∂J

∂W(1)
= prod

(
∂J

∂z
,

∂z
∂W(1)

)
+ prod

(
∂J

∂s
,

∂s

∂W(1)

)
=

∂J

∂z
x⊤ + λW(1). (4.7.14)

4.7.4 Training Neural Networks

When training neural networks, forward and backward propagation depend on each other. In
particular, for forward propagation, we traverse the computational graph in the direction of de-
pendencies and compute all the variables on its path. These are then used for backpropagation
where the compute order on the graph is reversed.

Take the aforementioned simple network as an example to illustrate. On one hand, computing the
regularization term (4.7.5) during forward propagation depends on the current values of model
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parametersW(1) andW(2). They are given by the optimization algorithm according to backpropa-
gation in the latest iteration. On the other hand, the gradient calculation for the parameter (4.7.11)
during backpropagation depends on the current value of the hidden variable h, which is given by
forward propagation.

Therefore when training neural networks, after model parameters are initialized, we alternate
forward propagation with backpropagation, updating model parameters using gradients given by
backpropagation. Note that backpropagation reuses the stored intermediate values from forward
propagation to avoid duplicate calculations. One of the consequences is that we need to retain
the intermediate values until backpropagation is complete. This is also one of the reasons why
training requires significantly more memory than plain prediction. Besides, the size of such in-
termediate values is roughly proportional to the number of network layers and the batch size.
Thus, training deeper networks using larger batch sizes more easily leads to out of memory errors.

Summary

• Forward propagation sequentially calculates and stores intermediate variables within the
computational graph definedby the neural network. It proceeds from the input to the output
layer.

• Backpropagation sequentially calculates and stores the gradients of intermediate variables
and parameters within the neural network in the reversed order.

• When training deep learning models, forward propagation and back propagation are inter-
dependent.

• Training requires significantly more memory than prediction.

Exercises

1. Assume that the inputs X to some scalar function f are n×mmatrices. What is the dimen-
sionality of the gradient of f with respect to X?

2. Add a bias to the hidden layer of the model described in this section (you do not need to
include bias in the regularization term).

1. Draw the corresponding computational graph.

2. Derive the forward and backward propagation equations.

3. Compute the memory footprint for training and prediction in the model described in this
section.

4. Assume that you want to compute second derivatives. What happens to the computational
graph? How long do you expect the calculation to take?

5. Assume that the computational graph is too large for your GPU.

1. Can you partition it over more than one GPU?

2. What are the advantages and disadvantages over training on a smaller minibatch?

Discussions71
71 https://discuss.d2l.ai/t/102
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4.8 Numerical Stability and Initialization

Thus far, everymodel that we have implemented required that we initialize its parameters accord-
ing to some pre-specified distribution. Until now, we took the initialization scheme for granted,
glossing over the details of how these choices are made. You might have even gotten the impres-
sion that these choices are not especially important. To the contrary, the choice of initialization
scheme plays a significant role in neural network learning, and it can be crucial for maintaining
numerical stability. Moreover, these choices can be tied up in interesting ways with the choice of
the nonlinear activation function. Which function we choose and how we initialize parameters
can determine howquickly our optimization algorithm converges. Poor choices here can cause us
to encounter exploding or vanishing gradients while training. In this section, we delve into these
topics with greater detail and discuss some useful heuristics that you will find useful throughout
your career in deep learning.

4.8.1 Vanishing and Exploding Gradients

Consider a deep network with L layers, input x and output o. With each layer l defined by a trans-
formation fl parameterized by weightsW(l), whose hidden variable is h(l) (let h(0) = x), our net-
work can be expressed as:

h(l) = fl(h(l−1)) and thus o = fL ◦ . . . ◦ f1(x). (4.8.1)

If all the hidden variables and the input are vectors, we can write the gradient of owith respect to
any set of parametersW(l) as follows:

∂W(l)o = ∂h(L−1)h(L)︸ ︷︷ ︸
M(L)def=

· . . . · ∂h(l)h(l+1)︸ ︷︷ ︸
M(l+1)def=

∂W(l)h(l)︸ ︷︷ ︸
v(l)def=

.
(4.8.2)

In other words, this gradient is the product ofL− lmatricesM(L) · . . . ·M(l+1) and the gradient vec-
tor v(l). Thus we are susceptible to the same problems of numerical underflow that often crop up
when multiplying together too many probabilities. When dealing with probabilities, a common
trick is to switch into log-space, i.e., shifting pressure from the mantissa to the exponent of the
numerical representation. Unfortunately, our problem above is more serious: initially the matri-
cesM(l) may have a wide variety of eigenvalues. They might be small or large, and their product
might be very large or very small.

The risks posed by unstable gradients go beyond numerical representation. Gradients of unpre-
dictable magnitude also threaten the stability of our optimization algorithms. We may be fac-
ing parameter updates that are either (i) excessively large, destroying our model (the exploding
gradient problem); or (ii) excessively small (the vanishing gradient problem), rendering learning
impossible as parameters hardly move on each update.

170 Chapter 4. Multilayer Perceptrons



Vanishing Gradients

One frequent culprit causing the vanishing gradient problem is the choice of the activation func-
tion σ that is appended following each layer s̓ linear operations. Historically, the sigmoid function
1/(1+exp(−x)) (introduced in Section 4.1) was popular because it resembles a thresholding func-
tion. Since early artificial neural networks were inspired by biological neural networks, the idea
of neurons that fire either fully or not at all (like biological neurons) seemed appealing. Let us take
a closer look at the sigmoid to see why it can cause vanishing gradients.

%matplotlib inline
from mxnet import autograd, np, npx
from d2l import mxnet as d2l

npx.set_np()

x = np.arange(-8.0, 8.0, 0.1)
x.attach_grad()
with autograd.record():

y = npx.sigmoid(x)
y.backward()

d2l.plot(x, [y, x.grad], legend=['sigmoid', 'gradient'], figsize=(4.5, 2.5))

As you can see, the sigmoid s̓ gradient vanishes both when its inputs are large and when they are
small. Moreover, when backpropagating through many layers, unless we are in the Goldilocks
zone, where the inputs to many of the sigmoids are close to zero, the gradients of the overall
product may vanish. When our network boasts many layers, unless we are careful, the gradient
will likely be cut off at some layer. Indeed, this problem used to plague deep network training.
Consequently, ReLUs, which are more stable (but less neurally plausible), have emerged as the
default choice for practitioners.
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Exploding Gradients

The opposite problem, when gradients explode, can be similarly vexing. To illustrate this a bit
better, we draw 100 Gaussian random matrices and multiply them with some initial matrix. For
the scale that we picked (the choice of the variance σ2 = 1), the matrix product explodes. When
this happens due to the initialization of a deep network, we have no chance of getting a gradient
descent optimizer to converge.

M = np.random.normal(size=(4, 4))
print('a single matrix', M)
for i in range(100):

M = np.dot(M, np.random.normal(size=(4, 4)))

print('after multiplying 100 matrices', M)

a single matrix [[ 2.2122064 1.1630787 0.7740038 0.4838046 ]
[ 1.0434405 0.29956347 1.1839255 0.15302546]
[ 1.8917114 -1.1688148 -1.2347414 1.5580711 ]
[-1.771029 -0.5459446 -0.45138445 -2.3556297 ]]
after multiplying 100 matrices [[ 3.4459714e+23 -7.8040680e+23 5.9973287e+23 4.5229990e+23]
[ 2.5275089e+23 -5.7240326e+23 4.3988473e+23 3.3174740e+23]
[ 1.3731286e+24 -3.1097155e+24 2.3897773e+24 1.8022959e+24]
[-4.4951040e+23 1.0180033e+24 -7.8232281e+23 -5.9000354e+23]]

Breaking the Symmetry

Another problem in neural network design is the symmetry inherent in their parametrization.
Assume that we have a simple MLP with one hidden layer and two units. In this case, we could
permute the weights W(1) of the first layer and likewise permute the weights of the output layer
to obtain the same function. There is nothing special differentiating the first hidden unit vs. the
second hidden unit. In other words, we have permutation symmetry among the hidden units of
each layer.

This ismore than just a theoretical nuisance. Consider the aforementioned one-hidden-layerMLP
with two hidden units. For illustration, suppose that the output layer transforms the two hidden
units into only one output unit. Imagine what would happen if we initialized all of the parameters
of the hidden layer as W(1) = c for some constant c. In this case, during forward propagation
either hidden unit takes the same inputs and parameters, producing the same activation, which
is fed to the output unit. During backpropagation, differentiating the output unit with respect to
parameters W(1) gives a gradient whose elements all take the same value. Thus, after gradient-
based iteration (e.g., minibatch stochastic gradient descent), all the elements ofW(1) still take the
same value. Such iterations would never break the symmetry on its own and we might never be
able to realize the network s̓ expressive power. The hidden layer would behave as if it had only a
single unit. Note that whileminibatch stochastic gradient descent would not break this symmetry,
dropout regularization would!

172 Chapter 4. Multilayer Perceptrons



4.8.2 Parameter Initialization

One way of addressing—or at least mitigating—the issues raised above is through careful initial-
ization. Additional care during optimization and suitable regularization can further enhance sta-
bility.

Default Initialization

In the previous sections, e.g., in Section 3.3, we used a normal distribution to initialize the values
of our weights. If we do not specify the initialization method, the framework will use a default
random initialization method, which often works well in practice for moderate problem sizes.

Xavier Initialization

Let us look at the scale distribution of an output (e.g., a hidden variable) oi for some fully-
connected layer without nonlinearities. With nin inputs xj and their associated weights wij for this
layer, an output is given by

oi =

nin∑
j=1

wijxj . (4.8.3)

The weights wij are all drawn independently from the same distribution. Furthermore, let us
assume that this distribution has zero mean and variance σ2. Note that this does not mean that
the distribution has to be Gaussian, just that the mean and variance need to exist. For now, let
us assume that the inputs to the layer xj also have zero mean and variance γ2 and that they are
independent of wij and independent of each other. In this case, we can compute the mean and
variance of oi as follows:

E[oi] =

nin∑
j=1

E[wijxj ]

=

nin∑
j=1

E[wij ]E[xj ]

= 0,

Var[oi] = E[o2i ]− (E[oi])
2

=

nin∑
j=1

E[w2
ijx

2
j ]− 0

=

nin∑
j=1

E[w2
ij ]E[x2j ]

= ninσ
2γ2.

(4.8.4)

One way to keep the variance fixed is to set ninσ
2 = 1. Now consider backpropagation. There

we face a similar problem, albeit with gradients being propagated from the layers closer to the
output. Using the same reasoning as for forward propagation, we see that the gradientsʼ variance
can blow up unless noutσ

2 = 1, where nout is the number of outputs of this layer. This leaves us in
a dilemma: we cannot possibly satisfy both conditions simultaneously. Instead, we simply try to
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satisfy:

1

2
(nin + nout)σ

2 = 1 or equivalently σ =

√
2

nin + nout
. (4.8.5)

This is the reasoning underlying the now-standard and practically beneficial Xavier initialization,
named after the first author of its creators (Glorot & Bengio, 2010). Typically, the Xavier initializa-
tion samples weights from a Gaussian distribution with zero mean and variance σ2 = 2

nin+nout
. We

can also adapt Xavier s̓ intuition to choose the variance when sampling weights from a uniform
distribution. Note that the uniform distribution U(−a, a) has variance a2

3 . Plugging a2

3 into our
condition on σ2 yields the suggestion to initialize according to

U

(
−
√

6

nin + nout
,

√
6

nin + nout

)
. (4.8.6)

Though the assumption for nonexistence of nonlinearities in the above mathematical reasoning
can be easily violated in neural networks, the Xavier initialization method turns out to work well
in practice.

Beyond

The reasoning above barely scratches the surface of modern approaches to parameter initializa-
tion. A deep learning framework often implements over a dozen different heuristics. Moreover,
parameter initialization continues to be a hot area of fundamental research in deep learning.
Among these are heuristics specialized for tied (shared) parameters, super-resolution, sequence
models, and other situations. For instance, Xiao et al. demonstrated the possibility of training
10000-layer neural networks without architectural tricks by using a carefully-designed initializa-
tion method (Xiao et al., 2018).

If the topic interests you we suggest a deep dive into this module s̓ offerings, reading the papers
that proposed and analyzed each heuristic, and then exploring the latest publications on the topic.
Perhaps you will stumble across or even invent a clever idea and contribute an implementation to
deep learning frameworks.

Summary

• Vanishing and exploding gradients are common issues in deep networks. Great care in pa-
rameter initialization is required to ensure that gradients and parameters remain well con-
trolled.

• Initialization heuristics are needed to ensure that the initial gradients are neither too large
nor too small.

• ReLU activation functionsmitigate the vanishing gradient problem. This can accelerate con-
vergence.

• Random initialization is key to ensure that symmetry is broken before optimization.

• Xavier initialization suggests that, for each layer, variance of any output is not affected by
the number of inputs, and variance of any gradient is not affected by the number of outputs.
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Exercises

1. Canyoudesign other caseswhere aneural networkmight exhibit symmetry requiringbreak-
ing besides the permutation symmetry in an MLP s̓ layers?

2. Can we initialize all weight parameters in linear regression or in softmax regression to the
same value?

3. Look up analytic bounds on the eigenvalues of the product of two matrices. What does this
tell you about ensuring that gradients are well conditioned?

4. If we know that some terms diverge, can we fix this after the fact? Look at the paper on
layerwise adaptive rate scaling for inspiration (You et al., 2017).

Discussions72

4.9 Environment and Distribution Shift

In the previous sections, weworked through a number of hands-on applications ofmachine learn-
ing, fittingmodels to a variety of datasets. And yet, we never stopped to contemplate either where
data come from in the first place or what we plan to ultimately do with the outputs from our mod-
els. Too often, machine learning developers in possession of data rush to developmodels without
pausing to consider these fundamental issues.

Many failed machine learning deployments can be traced back to this pattern. Sometimes mod-
els appear to perform marvelously as measured by test set accuracy but fail catastrophically in
deployment when the distribution of data suddenly shifts. More insidiously, sometimes the very
deployment of a model can be the catalyst that perturbs the data distribution. Say, for example,
that we trained a model to predict who will repay vs. default on a loan, finding that an applicant s̓
choice of footwear was associated with the risk of default (Oxfords indicate repayment, sneakers
indicate default). Wemight be inclined to thereafter grant loans to all applicants wearing Oxfords
and to deny all applicants wearing sneakers.

In this case, our ill-considered leap from pattern recognition to decision-making and our failure
to critically consider the environment might have disastrous consequences. For starters, as soon
as we began making decisions based on footwear, customers would catch on and change their
behavior. Before long, all applicants would be wearing Oxfords, without any coinciding improve-
ment in credit-worthiness. Take a minute to digest this because similar issues abound in many
applications of machine learning: by introducing our model-based decisions to the environment,
we might break the model.

While we cannot possibly give these topics a complete treatment in one section, we aim here to
expose some common concerns, and to stimulate the critical thinking required to detect these
situations early, mitigate damage, and use machine learning responsibly. Some of the solutions
are simple (ask for the “right” data), some are technically difficult (implement a reinforcement
learning system), and others require that we step outside the realm of statistical prediction al-
together and grapple with difficult philosophical questions concerning the ethical application of
algorithms.

72 https://discuss.d2l.ai/t/103
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4.9.1 Types of Distribution Shift

To begin, we stick with the passive prediction setting considering the various ways that data distri-
butions might shift and what might be done to salvage model performance. In one classic setup,
we assume that our training data were sampled from some distribution pS(x, y) but that our test
data will consist of unlabeled examples drawn from some different distribution pT (x, y). Already,
we must confront a sobering reality. Absent any assumptions on how pS and pT relate to each
other, learning a robust classifier is impossible.

Consider a binary classification problem, where we wish to distinguish between dogs and cats.
If the distribution can shift in arbitrary ways, then our setup permits the pathological case in
which the distribution over inputs remains constant: pS(x) = pT (x), but the labels are all flipped:
pS(y|x) = 1 − pT (y|x). In other words, if God can suddenly decide that in the future all “cats”
are now dogs and what we previously called “dogs” are now cats—without any change in the dis-
tribution of inputs p(x), then we cannot possibly distinguish this setting from one in which the
distribution did not change at all.

Fortunately, under some restricted assumptions on the ways our data might change in the future,
principled algorithms can detect shift and sometimes even adapt on the fly, improving on the
accuracy of the original classifier.

Covariate Shift

Among categories of distribution shift, covariate shift may be the most widely studied. Here, we
assume that while the distribution of inputs may change over time, the labeling function, i.e., the
conditional distribution P (y | x) does not change. Statisticians call this covariate shift because
the problem arises due to a shift in the distribution of the covariates (features). While we can
sometimes reason about distribution shift without invoking causality, we note that covariate shift
is the natural assumption to invoke in settings where we believe that x causes y.

Consider the challenge of distinguishing cats and dogs. Our training data might consist of images
of the kind in Fig. 4.9.1.

Fig. 4.9.1: Training data for distinguishing cats and dogs.

At test time we are asked to classify the images in Fig. 4.9.2.
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Fig. 4.9.2: Test data for distinguishing cats and dogs.

The training set consists of photos, while the test set contains only cartoons. Training on a dataset
with substantially different characteristics from the test set can spell trouble absent a coherent
plan for how to adapt to the new domain.

Label Shift

Label shift describes the converse problem. Here, we assume that the label marginal P (y) can
change but the class-conditional distribution P (x | y) remains fixed across domains. Label shift is
a reasonable assumption to make when we believe that y causes x. For example, we may want to
predict diagnoses given their symptoms (or other manifestations), even as the relative prevalence
of diagnoses are changing over time. Label shift is the appropriate assumption here because dis-
eases cause symptoms. In some degenerate cases the label shift and covariate shift assumptions
canhold simultaneously. For example, when the label is deterministic, the covariate shift assump-
tion will be satisfied, even when y causes x. Interestingly, in these cases, it is often advantageous
to work with methods that flow from the label shift assumption. That is because these methods
tend to involve manipulating objects that look like labels (often low-dimensional), as opposed to
objects that look like inputs, which tend to be high-dimensional in deep learning.

Concept Shift

Wemay also encounter the related problem of concept shift, which arises when the very definitions
of labels can change. This soundsweird—a cat is a cat, no? However, other categories are subject to
changes inusageover time. Diagnostic criteria formental illness, what passes for fashionable, and
job titles, are all subject to considerable amounts of concept shift. It turns out that if we navigate
around the United States, shifting the source of our data by geography, we will find considerable
concept shift regarding the distribution of names for soft drinks as shown in Fig. 4.9.3.
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Fig. 4.9.3: Concept shift on soft drink names in the United States.

If we were to build a machine translation system, the distribution P (y | x)might be different de-
pending on our location. This problem can be tricky to spot. Wemight hope to exploit knowledge
that shift only takes place gradually either in a temporal or geographic sense.

4.9.2 Examples of Distribution Shift

Before delving into formalism and algorithms, we can discuss some concrete situations where
covariate or concept shift might not be obvious.

Medical Diagnostics

Imagine that you want to design an algorithm to detect cancer. You collect data from healthy and
sick people and you train your algorithm. It works fine, giving youhigh accuracy and you conclude
that you are ready for a successful career in medical diagnostics. Not so fast.

The distributions that gave rise to the training data and those you will encounter in the wildmight
differ considerably. This happened to an unfortunate startup that some of us (authors) worked
with years ago. They were developing a blood test for a disease that predominantly affects older
men and hoped to study it using blood samples that they had collected from patients. However, it
is considerablymore difficult to obtain blood samples fromhealthymen than sick patients already
in the system. To compensate, the startup solicited blood donations from students on a university
campus to serve as healthy controls in developing their test. Then they asked whether we could
help them to build a classifier for detecting the disease.

As we explained to them, it would indeed be easy to distinguish between the healthy and sick
cohorts with near-perfect accuracy. However, that is because the test subjects differed in age,
hormone levels, physical activity, diet, alcohol consumption, and many more factors unrelated
to the disease. This was unlikely to be the case with real patients. Due to their sampling proce-
dure, we could expect to encounter extreme covariate shift. Moreover, this case was unlikely to
be correctable via conventional methods. In short, they wasted a significant sum of money.
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Self-Driving Cars

Say a company wanted to leverage machine learning for developing self-driving cars. One key
component here is a roadside detector. Since real annotated data are expensive to get, they had
the (smart andquestionable) idea to use synthetic data fromagame rendering engine as additional
training data. This worked reallywell on “test data” drawn from the rendering engine. Alas, inside
a real car it was a disaster. As it turned out, the roadside had been rendered with a very simplis-
tic texture. More importantly, all the roadside had been rendered with the same texture and the
roadside detector learned about this “feature” very quickly.

A similar thing happened to the US Army when they first tried to detect tanks in the forest. They
took aerial photographs of the forest without tanks, then drove the tanks into the forest and took
another set of pictures. The classifier appeared to work perfectly. Unfortunately, it had merely
learnedhow todistinguish treeswith shadows from treeswithout shadows—thefirst set of pictures
was taken in the early morning, the second set at noon.

Nonstationary Distributions

Amuch more subtle situation arises when the distribution changes slowly (also known as nonsta-
tionary distribution) and the model is not updated adequately. Below are some typical cases.

• We train a computational advertising model and then fail to update it frequently (e.g., we
forget to incorporate that an obscure new device called an iPad was just launched).

• We build a spam filter. It works well at detecting all spam that we have seen so far. But then
the spammers wisen up and craft new messages that look unlike anything we have seen
before.

• We build a product recommendation system. It works throughout the winter but then con-
tinues to recommend Santa hats long after Christmas.

More Anecdotes

• We build a face detector. It works well on all benchmarks. Unfortunately it fails on test
data—the offending examples are close-ups where the face fills the entire image (no such
data were in the training set).

• We build a Web search engine for the US market and want to deploy it in the UK.

• We train an image classifier by compiling a large dataset where each among a large set of
classes is equally represented in the dataset, say 1000 categories, represented by 1000 images
each. Then we deploy the system in the real world, where the actual label distribution of
photographs is decidedly non-uniform.
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4.9.3 Correction of Distribution Shift

As we have discussed, there are many cases where training and test distributions P (x, y) are dif-
ferent. In some cases, we get lucky and themodels work despite covariate, label, or concept shift.
In other cases, we can do better by employing principled strategies to cope with the shift. The re-
mainder of this section grows considerably more technical. The impatient reader could continue
on to the next section as this material is not prerequisite to subsequent concepts.

Empirical Risk and Risk

Let us first reflect about what exactly is happening duringmodel training: we iterate over features
and associated labels of training data {(x1, y1), . . . , (xn, yn)} and update the parameters of amodel
f after every minibatch. For simplicity we do not consider regularization, so we largely minimize
the loss on the training:

minimize
f

1

n

n∑
i=1

l(f(xi), yi), (4.9.1)

where l is the loss functionmeasuring “how bad” the prediction f(xi) is given the associated label
yi. Statisticians call the term in (4.9.1) empirical risk. The empirical risk is an average loss over the
trainingdata to approximate the risk, which is the expectationof the loss over the entire population
of data drawn from their true distribution p(x, y):

Ep(x,y)[l(f(x), y)] =
∫ ∫

l(f(x), y)p(x, y) dxdy. (4.9.2)

However, in practice we typically cannot obtain the entire population of data. Thus, empirical risk
minimization, which is minimizing the empirical risk in (4.9.1), is a practical strategy formachine
learning, with the hope to approximate minimizing the risk.

Covariate Shift Correction

Assume thatwewant to estimate somedependencyP (y | x) forwhichwehave labeled data (xi, yi).
Unfortunately, the observations xi are drawn from some source distribution q(x) rather than the
target distribution p(x). Fortunately, the dependency assumption means that the conditional dis-
tribution does not change: p(y | x) = q(y | x). If the source distribution q(x) is “wrong”, we can
correct for that by using the following simple identity in the risk:∫ ∫

l(f(x), y)p(y | x)p(x) dxdy =

∫ ∫
l(f(x), y)q(y | x)q(x)p(x)

q(x)
dxdy. (4.9.3)

In other words, we need to reweigh each data example by the ratio of the probability that it would
have been drawn from the correct distribution to that from the wrong one:

βi
def
=

p(xi)
q(xi)

. (4.9.4)

Plugging in the weight βi for each data example (xi, yi) we can train our model using weighted
empirical risk minimization:

minimize
f

1

n

n∑
i=1

βil(f(xi), yi). (4.9.5)
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Alas, we do not know that ratio, so before we can do anything useful we need to estimate it. Many
methods are available, including some fancy operator-theoretic approaches that attempt to recali-
brate the expectation operator directly using a minimum-norm or amaximum entropy principle.
Note that for any such approach, we need samples drawn from both distributions—the “true” p,
e.g., by access to test data, and the one used for generating the training set q (the latter is trivially
available). Note however, that we only need features x ∼ p(x); we do not need to access labels
y ∼ p(y).

In this case, there exists a very effective approach that will give almost as good results as the orig-
inal: logistic regression, which is a special case of softmax regression (see Section 3.4) for binary
classification. This is all that is needed to compute estimated probability ratios. We learn a classi-
fier to distinguish between data drawn from p(x) and data drawn from q(x). If it is impossible to
distinguish between the two distributions then it means that the associated instances are equally
likely to come from either one of the two distributions. On the other hand, any instances that can
be well discriminated should be significantly overweighted or underweighted accordingly.

For simplicity s̓ sake assume that we have an equal number of instances from both distributions
p(x) and q(x), respectively. Now denote by z labels that are 1 for data drawn from p and −1 for
data drawn from q. Then the probability in a mixed dataset is given by

P (z = 1 | x) = p(x)
p(x) + q(x)

and hence
P (z = 1 | x)
P (z = −1 | x)

=
p(x)
q(x)

. (4.9.6)

Thus, if we use a logistic regression approach, where P (z = 1 | x) = 1
1+exp(−h(x)) (h is a parame-

terized function), it follows that

βi =
1/(1 + exp(−h(xi)))

exp(−h(xi))/(1 + exp(−h(xi)))
= exp(h(xi)). (4.9.7)

As a result, we need to solve two problems: first one to distinguish between data drawn from both
distributions, and then aweighted empirical riskminimization problem in (4.9.5) whereweweigh
terms by βi.

Now we are ready to describe a correction algorithm. Suppose that we have a training set
{(x1, y1), . . . , (xn, yn)} and an unlabeled test set {u1, . . . ,um}. For covariate shift, we assume that
xi for all 1 ≤ i ≤ n are drawn from some source distribution and ui for all 1 ≤ i ≤ m are drawn
from the target distribution. Here is a prototypical algorithm for correcting covariate shift:

1. Generate a binary-classification training set: {(x1,−1), . . . , (xn,−1), (u1, 1), . . . , (um, 1)}.

2. Train a binary classifier using logistic regression to get function h.

3. Weigh training data using βi = exp(h(xi)) or better βi = min(exp(h(xi)), c) for some con-
stant c.

4. Use weights βi for training on {(x1, y1), . . . , (xn, yn)} in (4.9.5).

Note that the above algorithm relies on a crucial assumption. For this scheme to work, we need
that each data example in the target (e.g., test time) distribution had nonzero probability of oc-
curring at training time. If we find a point where p(x) > 0 but q(x) = 0, then the corresponding
importance weight should be infinity.

4.9. Environment and Distribution Shift 181


