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Introduction 

In this book, we introduce coding with TensorFlow 2.0. The book 
is based on three notebooks listed below. We show how to develop 
with TensorFlow 1.0 and contrast how the same code can be de-
veloped in TensorFlow 2.0. The book emphasises the unique fea-
tures of TensorFlow 2.0. 
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Notebooks 

1. TensorFlow 1.0 
2. TensorFlow 2.0 
3. TensorFlow datasets 
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TensorFlow 1.x vs 2.x.ipynb 

Overview of changes TensorFlow 1.0 
vs TensorFlow 2.0 

Earlier this year, Google announced TensorFlow 2.0, it is a major 
leap from the existing TensorFlow 1.0. The key differences are as 
follows: 

Ease of use: Many old libraries (example tf.contrib) were removed, 
and some consolidated. For example, in TensorFlow1.x the model 
could be made using Contrib, layers, Keras or estimators, so many 
options for the same task confused many new users. TensorFlow 
2.0 promotes TensorFlow Keras for model experimentation and 
Estimators for scaled serving, and the two APIs are very conven-
ient to use. 

Eager Execution: In TensorFlow 1.x. The writing of code was di-
vided into two parts: building the computational graph and later 
creating a session to execute it. this was quite cumbersome, espe-
cially if in the big model that you have designed, a small error ex-
isted somewhere in the beginning. TensorFlow2.0 Eager Execution 
is implemented by default, i.e. you no longer need to create a ses-
sion to run the computational graph, you can see the result of your 
code directly without the need of creating Session. 
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Model Building and deploying made easy: With TensorFlow2.0 
providing high level TensorFlow Keras API, the user has a greater 
flexibility in creating the model. One can define model using Keras 
functional or sequential API. The TensorFlow Estimator API al-
lows one to run model on a local host or on a distributed multi-
server environment without changing your model. Computational 
graphs are powerful in terms of performance, in TensorFlow 2.0 
you can use the decorator tf.function so that the following func-
tion block is run as a single graph. This is done via the powerful 
Autograph feature of TensorFlow 2.0. This allows users to optimize 
the function and increase portability. And the best part you can 
write the function using natural Python syntax. Effectively, you can 
use the decorator tf.function to turn plain Python code into graph. 
While the decorator @tf.function applies to the function block 
immediately following it, any functions called by it will be execut-
ed in graph mode as well. Thus, in TensorFlow 2.0, users should 
refactor their code into smaller functions which are called as need-
ed. In general, it's not necessary to decorate each of these smaller 
functions with tf.function; only use tf.function to decorate high-
level computations - for example, one step of training, or the for-
ward pass of your model. (source stack overflow and TF2 docu-
mentation) 

To expand this idea, In TensorFlow 1.x we needed to build the 
computational graph. TensorFlow 2.0 does not build graph by de-
fault. However, as every Machine Learning engineer knows, graphs 
are good for speed. TensorFlow 2.0 provides the user to create a 
callable graph using a python function @tf.function. The 
tf.function() will create a separate graph for every unique set of 
input shapes and datatypes. In the example below we will have 
three separate graphs created, one for each input datatype. 
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@tf.function 
def f(x): return tf.add(x, 1.) 
scalar = tf.constant(1.0) 
vector = tf.constant([1.0, 1.0]) 
matrix = tf.constant([[3.0]]) 
print(f(scalar)) 
print(f(vector)) 
print(f(matrix)) 

The Data pipeline simplified: TensorFlow2.0 has a separate mod-
ule TensorFlow DataSets that can be used to operate with the mod-
el in more elegant way. Not only it has a large range of existing 
datasets, making your job of experimenting with a new architec-
ture easier – it also has well defined way to add your data to it. 

In TensorFlow 1.x for building a model we would first need to 
declare placeholders. These were the dummy variables which will 
later (in the session) used to feed data to the model. There were 
many built-in APIs for building the layers like tf.contrib, tf.layers 
and tf.keras, one could also build layers by defining the actual 
mathematical operations. 

TensorFlow 2.0 you can build your model defining your own 
mathematical operations, as before you can use math module 
(tf.math) and linear algebra (tf.linalg) module. However, you can 
take advantage of the high level Keras API and tf.layers module. 
The important part is we do not need to define placeholders any 
more. 
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Simplified conceptual diagram for 
TensorFlow 2.0 

A simplified, conceptual diagram as shown below for TensorFlow 2.0 

 

Source: 
https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8 

Some important points are: 
• Load your data using data. Training data is read using input 

pipelines which are created using tf.data. 
• Use TensorFlow Dataset to get a large variety of datasets to 

train your model. 
• Build, train and validate your model with keras, or use Esti-

mators API. 
• TensorFlow Hub in the TensorFlow ecosystem contains a 

large number of pretrained models, using the standard inter-
face, you can import any of the models from TensorFlow 
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Hub and either train it from scratch or fine tune it for your 
data using transfer learning technique. 

• Run and debug with eager execution, then use function for 
the benefits of graphs. 

• Use Distribution Strategies for distributed training. For large 
ML training tasks, the Distribution Strategy API makes it 
easy to distribute and train models on different hardware 
configurations without changing the model definition. You 
can distribute your training load to a range of hardware ac-
celerators like CPUs, GPUs, and TPUs 

• Although this API supports a variety of cluster configura-
tions, templates to deploy training on Kubernetes clusters in 
on-prem or cloud environments are provided. 

• Export to SavedModel. TensorFlow will standardize on 
SavedModel as an interchange format for TensorFlow Serv-
ing, TensorFlow Lite, TensorFlow.js, TensorFlow Hub, and 
more. 

• Once you’ve trained and saved your model, you can execute 
it directly in your application or serve it using one of the de-
ployment libraries: TensorFlow Serving: A TensorFlow li-
brary allowing models to be served over HTTP/REST or 
gRPC/Protocol Buffers. TensorFlow Lite: TensorFlow’s light-
weight solution for mobile and embedded devices provides 
the capability to deploy models on Android, iOS and em-
bedded systems like a Raspberry Pi and Edge TPUs. js: Ena-
bles deploying models in JavaScript environments, such as in 
a web browser or server side through Node.js. TensorFlow.js 
also supports defining models in JavaScript and training di-
rectly in the web browser using a Keras-like API. 



Dr Amita Kapoor – Ajit Jaokar 

 
– 12 – 

Coding with TensorFlow 2.0 

 

TensorFlow 2.0 offers many performance improvements on GPUs. 
TensorFlow 2.0 delivers up to 3x faster training performance using 
mixed precision on Volta and Turing GPUs with a few lines of 
code, used for example in ResNet-50 and BERT. TensorFlow 2.0 is 
tightly integrated with TensorRT and uses an improved API to 
deliver better usability and high performance during inference on 
NVIDIA T4 Cloud GPUs on Google Cloud. 

 
Above section adapted from 

https://medium.com/tensorflow/whats-coming-in-tensorflow-2-0-d3663832e9b8 
and https://medium.com/tensorflow/tensorflow-2-0-is-now-available-57d706c2a9ab 

Observations 

On one hand, Tensorflow 2.0 does not feel new. Probably because 
even in the age of Tensorflow 1.0, almost everyone was using keras! 
Keras is now central to Tensorflow 2.0 but Tensorflow 2.0 has 
much more features as we see above. 
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TensorFlow1.0 

Creating computational graph and running a session. 
 
[ ] 
!pip install tensorflow-gpu==1.14 
 
[ ] 
# Import Tensorflow and check the version 
import tensorflow as tf 
print(tf.__version__) 
 
1.14.0 
 
[ ] 
# define the computational graph 
a = tf.constant("Hello world!") 
[ ] 
# run the computational graph in session 
with tf.Session() as sess: 
  result = sess.run(a) 
  print(result) 
 
'Hello world!' 
 
Building a model 
[ ] 
# Getting data 
from sklearn.datasets import load_iris 
from sklearn.model_selection import 
train_test_split 
from sklearn.preprocessing import OneHotEncoder 
 
iris_data = load_iris() # load the iris dataset 
 
x = iris_data.data 
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y_ = iris_data.target.reshape(-1, 1) # Convert data 
to a single column 
 
# One Hot encode the class labels 
encoder = OneHotEncoder(sparse=False) 
y = encoder.fit_transform(y_) 
 
train_x, test_x, train_y, test_y = train_test_split(x, 
y, test_size=0.20) 
 
/usr/local/lib/python3.6/dist-
packages/sklearn/preprocessing/_encoders.py:415: 

In case you used a LabelEncoder before this OneHotEncoder to 
convert the categories to integers, then you can now use the 
OneHotEncoder directly. 
 
warnings.warn(msg, FutureWarning) 
 
 
[ ] 
n_input = 4 
n_output = 3 
n_hidden = 10 
 
#hyperparameter 
learning_rate = 0.01 
training_epochs = 2000 
display_steps = 200 
[ ] 
# Create placeholder and Variables for the input 
and weights 
 
#Graph Nodes 
X = tf.placeholder("float", [None, n_input]) 
Y = tf.placeholder("float", [None, n_output]) 
 
#Weights and Biases 
weights = { 
  "hidden" : tf.Variable(tf.random_normal([n_input, 
n_hidden]), name="weight_hidden"), 
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  "output" : 
tf.Variable(tf.random_normal([n_hidden, n_output]), 
name="weight_output") 
} 
 
bias = { 
  "hidden" : tf.Variable(tf.random_normal([n_hidden]), 
name="bias_hidden"), 
  "output" : tf.Variable(tf.random_normal([n_output]), 
name="bias_output") 
} 
 
[ ] 
def model(x, weights, bias): 
  layer_1 = tf.add(tf.matmul(x, weights["hidden"]), 
bias["hidden"]) 
  layer_1 = tf.nn.relu(layer_1) 
 
  output_layer = tf.matmul(layer_1, weights["output"]) 
+ bias["output"] 
  return output_layer 
[ ] 
perceptron = model(X, weights, bias) 
[ ] 
#Define loss and optimizer 
cost = 
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_log
its(logits=perceptron, labels=Y)) 
optimizer = 
tf.train.AdamOptimizer(learning_rate).minimize(cost) 
 

Instructions for updating: 

Future major versions of TensorFlow will allow gradients to flow 
into the labels input on backprop by default. 

See `tf.nn.softmax_cross_entropy_with_logits_v2`. 
 
[ ] 
#Initializing global variables 
init = tf.global_variables_initializer() 
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with tf.Session() as sess: 
  sess.run(init) 
 
  for epoch in range(training_epochs): 
    _, c = sess.run([optimizer, cost], feed_dict={X: 
train_x, Y: train_y}) 
    if(epoch + 1) % display_steps == 0: 
      print ("Epoch: ", (epoch+1), "Cost: ", c) 
 
  print("Optimization Finished!") 
 
  test_result = sess.run(perceptron, feed_dict={X: 
test_x}) 
  correct_pred = tf.equal(tf.argmax(test_result, 
1), tf.argmax(test_y, 1)) 
 
  accuracy = tf.reduce_mean(tf.cast(correct_pred, 
"float")) 
  print ("Accuracy:", accuracy.eval({X: test_x, Y: 
test_y})) 
 
Epoch:  200 Cost:  0.26588085 
Epoch:  400 Cost:  0.14439923 
Epoch:  600 Cost:  0.10045961 
Epoch:  800 Cost:  0.08092845 
Epoch:  1000 Cost:  0.070696324 
Epoch:  1200 Cost:  0.06470656 
Epoch:  1400 Cost:  0.060857367 
Epoch:  1600 Cost:  0.05816547 
Epoch:  1800 Cost:  0.056141052 
Epoch:  2000 Cost:  0.054527108 
Optimization Finished! 
Accuracy: 1.0 
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TensorFlow2.0 

[ ] !pip install tensorflow-gpu==2.0.0-rc1 
 
[ ] 
# Import Tensorflow and check the version 
import tensorflow as tf 
print(tf.__version__) 
 
 
[ ] 
a = tf.constant("Hello world!") 
print(a) 
 
 
Autograph and tf.function() 
[ ] 
@tf.function 
def f(x): return tf.add(x, 1.) 
 
scalar = tf.constant(1.0) 
vector = tf.constant([1.0, 1.0]) 
matrix = tf.constant([[3.0]]) 
 
print(f(scalar)) 
print(f(vector)) 
print(f(matrix)) 
 
 
Building a model 
[ ] 
n_input = 4 
n_output = 3 
n_hidden = 10 
 
#hyperparameter 
learning_rate = 0.01 
training_epochs = 2000 
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display_steps = 200 
[ ] 
# Getting data 
from sklearn.datasets import load_iris 
from sklearn.model_selection import 
train_test_split 
from sklearn.preprocessing import OneHotEncoder 
 
iris_data = load_iris() # load the iris dataset 
 
x = iris_data.data 
y_ = iris_data.target.reshape(-1, 1) # Convert data 
to a single column 
 
# One Hot encode the class labels 
encoder = OneHotEncoder(sparse=False) 
y = encoder.fit_transform(y_) 
 
train_x, test_x, train_y, test_y = train_test_split(x, 
y, test_size=0.20) 
 
 /usr/local/lib/python3.6/dist-packages/sklearn/ 
preprocessing/_encoders.py:415: FutureWarning: 
 

The handling of integer data will change in version 0.22. Currently, 
the categories are determined based on the range [0, max(values)], 
while in the future they will be determined based on the unique 
values. 

If you want the future behaviour and silence this warning, you 
can specify "categories='auto'". 

In case you used a LabelEncoder before this OneHotEncoder to 
convert the categories to integers, then you can now use the 
OneHotEncoder directly. 
 
warnings.warn(msg, FutureWarning) 
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[ ] 
# Build the model 
 
model = tf.keras.Sequential() 
 
model.add(tf.keras.layers.Dense(n_hidden, 
input_shape=(n_input,), activation='relu', 
name='fc1')) 
model.add(tf.keras.layers.Dense(n_output, 
activation='softmax', name='output')) 
 
# Adam optimizer with learning rate of 0.001 
optimizer = tf.keras.optimizers.Adam(lr=0.001) 
model.compile(optimizer, 
loss='categorical_crossentropy', metrics=['accuracy']) 
 
print('Neural Network Model Summary: ') 
print(model.summary()) 
 Neural Network Model Summary: 
Model: "sequential_3" 
___________________________________________________ 
Layer (type)          Output Shape          Param # 
=================================================== 
fc1 (Dense)           (None, 10)            50 
___________________________________________________ 
output (Dense)        (None, 3)             33 
=================================================== 
Total params: 83 
Trainable params: 83 
Non-trainable params: 0 
___________________________________________________ 
None 
 
 
 
[ ] 
# Train the model 
model.fit(train_x, train_y, verbose=2, batch_size=5, 
epochs=200) 
 
# Test on unseen data 
 
results = model.evaluate(test_x, test_y) 
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Train on 120 samples 
Epoch 1/200 
- 0s 7ms/sample - loss: 0.0340 - accuracy: 1.0000 
[ ] 
print('Final test set loss: {:4f}'.format(results[0])) 
print('Final test set accuracy: {:4f}'.format(results[1])) 
 
 
[ ] 
!pip install tensorflow-datasets 
Collecting tensorflow-datasets 
  Downloading 
Installing collected packages: tensorflow-datasets 
Successfully installed tensorflow-datasets-1.2.0 
 
[ ] 
import tensorflow_datasets as tfds 
[ ] 
tfds.list_builders() 
 
['abstract_reasoning', 
 'aflw2k3d', 
 'amazon_us_reviews', 
 'bair_robot_pushing_small', 
 'bigearthnet', 
 'binarized_mnist', 
 'binary_alpha_digits', 
 'caltech101', 
 'caltech_birds2010', 
 'caltech_birds2011', 
 'cats_vs_dogs', 
 'celeb_a', 
 'celeb_a_hq', 
 'chexpert', 
 'cifar10', 
 'cifar100', 
 'cifar10_corrupted', 
 'clevr', 
 'cnn_dailymail', 
 'coco', 
 'coco2014', 
 'coil100', 
 'colorectal_histology', 
 'colorectal_histology_large', 
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 'curated_breast_imaging_ddsm', 
 'cycle_gan', 
 'deep_weeds', 
 'definite_pronoun_resolution', 
 'diabetic_retinopathy_detection', 
 'downsampled_imagenet', 
 'dsprites', 
 'dtd', 
 'dummy_dataset_shared_generator', 
 'dummy_mnist', 
 'emnist', 
 'eurosat', 
 'fashion_mnist', 
 'flores', 
 'food101', 
 'gap', 
 'glue', 
 'groove', 
 'higgs', 
 'horses_or_humans', 
 'image_label_folder', 
 'imagenet2012', 
 'imagenet2012_corrupted', 
 'imdb_reviews', 
 'iris', 
 'kitti', 
 'kmnist', 
 'lfw', 
 'lm1b', 
 'lsun', 
 'mnist', 
 'mnist_corrupted', 
 'moving_mnist', 
 'multi_nli', 
 'nsynth', 
 'omniglot', 
 'open_images_v4', 
 'oxford_flowers102', 
 'oxford_iiit_pet', 
 'para_crawl', 
 'patch_camelyon', 
 'pet_finder', 
 'quickdraw_bitmap', 
 'resisc45', 
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 'rock_paper_scissors', 
 'rock_you', 
 'scene_parse150', 
 'shapes3d', 
 'smallnorb', 
 'snli', 
 'so2sat', 
 'squad', 
 'stanford_dogs', 
 'stanford_online_products', 
 'starcraft_video', 
 'sun397', 
 'super_glue', 
 'svhn_cropped', 
 'ted_hrlr_translate', 
 'ted_multi_translate', 
 'tf_flowers', 
 'titanic', 
 'trivia_qa', 
 'uc_merced', 
 'ucf101', 
 'visual_domain_decathlon', 
 'voc2007', 
 'wikipedia', 
 'wmt14_translate', 
 'wmt15_translate', 
 'wmt16_translate', 
 'wmt17_translate', 
 'wmt18_translate', 
 'wmt19_translate', 
 'wmt_t2t_translate', 
 'wmt_translate', 
 'xnli'] 
 
[ ] 
iris = tfds.load(name="iris", split=None) 
 Downloading and preparing dataset iris (4.44 KiB) 
to /root/tensorflow_datasets/iris/1.0.0... 
HBox(children=(IntProgress(value=1, bar_style='info', 
description='Dl Completed...', max=1, 
style=ProgressStyl... 
HBox(children=(IntProgress(value=1, 
bar_style='info', description='Dl Size...', max=1, 
style=ProgressStyle(des... 
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/usr/local/lib/python3.6/dist-packages/urllib3/ 
connectionpool.py:847: InsecureRequestWarning: 
Unverified HTTPS request is being made. Adding 
certificate verification is strongly advised. See: 
https://urllib3.readthedocs.io/en/latest/advanced-
usage.html#ssl-warnings 
  InsecureRequestWarning) 
HBox(children=(IntProgress(value=1, bar_style='info', 
max=1), HTML(value=''))) 
HBox(children=(IntProgress(value=0, 
description='Shuffling...', max=1, 
style=ProgressStyle(description_width='... 
WARNING:tensorflow:From 
/usr/local/lib/python3.6/dist-packages/ 
tensorflow_datasets/core/file_format_adapter.py:209
: tf_record_iterator (from 
tensorflow.python.lib.io.tf_record) is deprecated 
and will be removed in a future version. 
Instructions for updating: 
Use eager execution and: 
`tf.data.TFRecordDataset(path)` 
WARNING:tensorflow:From 
/usr/local/lib/python3.6/dist-packages/ 
tensorflow_datasets/core/file_format_adapter.py:209
: tf_record_iterator (from 
tensorflow.python.lib.io.tf_record) is deprecated 
and will be removed in a future version. 
Instructions for updating: 
Use eager execution and: 
`tf.data.TFRecordDataset(path)` 
HBox(children=(IntProgress(value=1, 
bar_style='info', description='Reading...', max=1, 
style=ProgressStyle(des... 
HBox(children=(IntProgress(value=0, 
description='Writing...', max=150, 
style=ProgressStyle(description_width='... 
WARNING:absl:Warning: Setting shuffle_files=True 
because split=TRAIN and shuffle_files=None. This 
behavior will be deprecated on 2019-08-06, at which 
point shuffle_files=False will be the default for 
all splits. 
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Dataset iris downloaded and prepared to 
/root/tensorflow_datasets/iris/1.0.0. Subsequent 
calls will reuse this data. 
 
[ ] 
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TensorFlowDataset.ipynb_ 

[ ] 
# Install TensorFlow 2.0 
!pip install -q tensorflow-gpu==2.0.0-rc 

TensorFlow Datasets 

Data as we all know is the new "gold", no matter what application 
you have in mind it can be improved upon by sufficient data. Get-
ting data used to be one of the most difficult task in AI/ML, but 
thanks to Google's TensorFlow Dataset it is not so any more. 

In this post you will learn about TensorFlow Dataset and how to 
include it in your ML pipeline. 

Before we start you should ensure that you have the laters ver-
sion of TensorFlow installed. We will need to install TensorFlow 
Dataset as well: 
 
pip install tensorflow-datasets 
 
[ ] 
!pip install tensorflow-datasets 

Now that TensorFlow DataSet is installed let us import it and get a 
list of all the available datasets: we can do this by using 
list_builders() function. This results in generating a list of string 
where each string is a dataset. For example, the iris dataset is listed 
in the list as string 'iris'. 

The TensorFlow Dataset works over TensorFlow, so in order to 
use it you will need to import TensorFlow as well. 
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[ ] 
import tensorflow as tf 
import tensorflow_datasets as tfds 
tfds.list_builders() 
['abstract_reasoning', 
 'aflw2k3d', 
 'amazon_us_reviews', 
 'bair_robot_pushing_small', 
 'bigearthnet', 
 'binarized_mnist', 
 'binary_alpha_digits', 
 'caltech101', 
 'caltech_birds2010', 
 'caltech_birds2011', 
 'cats_vs_dogs', 
 'celeb_a', 
 'celeb_a_hq', 
 'chexpert', 
 'cifar10', 
 'cifar100', 
 'cifar10_corrupted', 
 'clevr', 
 'cnn_dailymail', 
 'coco', 
 'coco2014', 
 'coil100', 
 'colorectal_histology', 
 'colorectal_histology_large', 
 'curated_breast_imaging_ddsm', 
 'cycle_gan', 
 'deep_weeds', 
 'definite_pronoun_resolution', 
 'diabetic_retinopathy_detection', 
 'downsampled_imagenet', 
 'dsprites', 
 'dtd', 
 'dummy_dataset_shared_generator', 
 'dummy_mnist', 
 'emnist', 
 'eurosat', 
 'fashion_mnist', 
 'flores', 
 'food101', 
 'gap', 
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 'glue', 
 'groove', 
 'higgs', 
 'horses_or_humans', 
 'image_label_folder', 
 'imagenet2012', 
 'imagenet2012_corrupted', 
 'imdb_reviews', 
 'iris', 
 'kitti', 
 'kmnist', 
 'lfw', 
 'lm1b', 
 'lsun', 
 'mnist', 
 'mnist_corrupted', 
 'moving_mnist', 
 'multi_nli', 
 'nsynth', 
 'omniglot', 
 'open_images_v4', 
 'oxford_flowers102', 
 'oxford_iiit_pet', 
 'para_crawl', 
 'patch_camelyon', 
 'pet_finder', 
 'quickdraw_bitmap', 
 'resisc45', 
 'rock_paper_scissors', 
 'rock_you', 
 'scene_parse150', 
 'shapes3d', 
 'smallnorb', 
 'snli', 
 'so2sat', 
 'squad', 
 'stanford_dogs', 
 'stanford_online_products', 
 'starcraft_video', 
 'sun397', 
 'super_glue', 
 'svhn_cropped', 
 'ted_hrlr_translate', 
 'ted_multi_translate', 
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 'tf_flowers', 
 'titanic', 
 'trivia_qa', 
 'uc_merced', 
 'ucf101', 
 'visual_domain_decathlon', 
 'voc2007', 
 'wikipedia', 
 'wmt14_translate', 
 'wmt15_translate', 
 'wmt16_translate', 
 'wmt17_translate', 
 'wmt18_translate', 
 'wmt19_translate', 
 'wmt_t2t_translate', 
 'wmt_translate', 
 'xnli'] 

Each dataset can be loaded using load function with its name as 
string, you can specify the complete data, or just specific set. There 
are various options that you can specify with the load function, for 
complete list refer here. 

Let us try loading one of the data from the list, we chose the one 
most familiar: MNIST dataset. The load function returns the da-
taset requested and if with_info parameter is set to True then also 
information about the dataset. 
 
[ ] 
data, info = tfds.load(name='fashion_mnist', 
as_supervised=True, split=None, with_info=True) 

If you print the info it give you details about the dataset, the type of 
dataset, number of training, test samples. Its original source and 
even how to cite it. 
 
[ ] 
print(info) 
tfds.core.DatasetInfo( 
    name='fashion_mnist', 
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    version=1.0.0, 
    description='Fashion-MNIST is a dataset of 
Zalando's article images consisting of a training 
set of 60,000 examples and a test set of 10,000 
examples. Each example is a 28x28 grayscale image, 
associated with a label from 10 classes.', 
    urls=['https://github.com/zalandoresearch/ 
fashion-mnist'], 
    features=FeaturesDict({ 
       'image': Image(shape=(28, 28, 1), dtype=tf.uint8), 
       'label': ClassLabel(shape=(), 
dtype=tf.int64, num_classes=10), 
    }), 
    total_num_examples=70000, 
    splits={ 
        'test': 10000, 
        'train': 60000, 
    }, 
   supervised_keys=('image', 'label'), 
   citation="""@article{DBLP:journals/corr/abs-1708-07747, 
      author    = {Han Xiao and 
                   Kashif Rasul and 
                   Roland Vollgraf}, 
      title     = {Fashion-MNIST: a Novel Image 
Dataset for Benchmarking Machine Learning 
                   Algorithms}, 
      journal   = {CoRR}, 
      volume    = {abs/1708.07747}, 
      year      = {2017}, 
      url       = 
{http://arxiv.org/abs/1708.07747}, 
      archivePrefix = {arXiv}, 
      eprint    = {1708.07747}, 
      timestamp = {Mon, 13 Aug 2018 16:47:27 +0200}, 
      biburl    = 
{https://dblp.org/rec/bib/journals/corr/abs-1708-07747}, 
      bibsource = {dblp computer science 
bibliography, https://dblp.org} 
    }""", 
    redistribution_info=, 
) 

Let us now get training and test data set 
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[ ] 
train, test = data['train'], data['test'] 

For the ML pipeline we need to get data in batches, preferrable shuf-
fled. To get a stream of data repeatedly we can use functions shuffle() 
and batch(). Also the images need to be normalized, so we define a 
function normalize and define our training hyperparameters. 
 
[ ] 
BUFFER_SIZE = 10 # Use a much larger value for real 
code. 
BATCH_SIZE = 64 
NUM_EPOCHS = 5 
 
 
def normalize(image, label): 
  image = tf.cast(image, tf.float32) 
  image /= 255 
 
  return image, label 
 
train_data = train.map(normalize). 
shuffle(BUFFER_SIZE).batch(BATCH_SIZE) 
test_data = test.map(normalize).batch(BATCH_SIZE) 
 
STEPS_PER_EPOCH = 5 
 
train_data = train_data.take(STEPS_PER_EPOCH) 
test_data = test_data.take(STEPS_PER_EPOCH) 

You can iterate over the entire dataset using next(iter(train_data)). 
The code will generate data in batches defined by BATCH_SIZE. 
 
[ ] 
image_batch, label_batch = next(iter(train_data)) 
 
[ ] 
import numpy as np 
import matplotlib.pyplot as plt 
idx = np.random.randint(0, BATCH_SIZE, size =30 ) 
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fig=plt.figure(figsize=(8, 8)) 
columns = 4 
rows = 5 
for i in range(1, columns*rows +1): 
    fig.add_subplot(rows, columns, i) 
    plt.imshow(image_batch[idx[i],:,:,0], cmap='gray') 
plt.show() 
 

 

And now let us build a simple model and train it for the Fashion-
MNIST data. 
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[ ] 
 
model = tf.keras.Sequential([ 
    tf.keras.layers.Conv2D(32, 3, activation='relu', 
                           
kernel_regularizer=tf.keras.regularizers.l2(0.02), 
                           input_shape=(28, 28, 1)), 
    tf.keras.layers.MaxPooling2D(), 
    tf.keras.layers.Flatten(), 
    tf.keras.layers.Dropout(0.1), 
    tf.keras.layers.Dense(64, activation='relu'), 
    tf.keras.layers.BatchNormalization(), 
    tf.keras.layers.Dense(10, activation='softmax') 
]) 
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# Model is the full model w/o custom layers 
model.compile(optimizer='adam', 
              
loss='sparse_categorical_crossentropy', 
              metrics=['accuracy']) 
 
model.fit(train_data, epochs=NUM_EPOCHS) 
loss, acc = model.evaluate(test_data) 
 
print("Loss {}, Accuracy {}".format(loss, acc)) 
 
Epoch 1/5 
WARNING:tensorflow:Entity <function 
Function._initialize_uninitialized_variables.<locals
>.initialize_variables at 0x7ff3f28c0400> could not 
be transformed and will be executed as-is. Please 
report this to the AutoGraph team. When filing the 
bug, set the verbosity to 10 (on Linux, `export 
AUTOGRAPH_VERBOSITY=10`) and attach the full output. 
Cause: module 'gast' has no attribute 'Num' 
WARNING:tensorflow:Entity <function 
Function._initialize_uninitialized_variables.<locals
>.initialize_variables at 0x7ff3f28c0400> could not 
be transformed and will be executed as-is. Please 
report this to the AutoGraph team. When filing the 
bug, set the verbosity to 10 (on Linux, `export 
AUTOGRAPH_VERBOSITY=10`) and attach the full output. 
Cause: module 'gast' has no attribute 'Num' 
WARNING: Entity <function 
Function._initialize_uninitialized_variables.<locals
>.initialize_variables at 0x7ff3f28c0400> could not 
be transformed and will be executed as-is. Please 
report this to the AutoGraph team. When filing the 
bug, set the verbosity to 10 (on Linux, `export 
AUTOGRAPH_VERBOSITY=10`) and attach the full output. 
Cause: module 'gast' has no attribute 'Num' 
5/5 [==============================] - 2s 417ms/step 
- loss: 1.6265 - accuracy: 0.4281 
Epoch 2/5 
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5/5 [==============================] - 0s 51ms/step 
- loss: 0.8640 - accuracy: 0.7469 
Epoch 3/5 
5/5 [==============================] - 0s 49ms/step 
- loss: 0.7518 - accuracy: 0.7937 
Epoch 4/5 
5/5 [==============================] - 0s 49ms/step 
- loss: 0.6016 - accuracy: 0.8500 
Epoch 5/5 
5/5 [==============================] - 0s 53ms/step 
- loss: 0.5105 - accuracy: 0.8781 
5/5 [==============================] - 0s 51ms/step 
- loss: 1.4742 - accuracy: 0.6812 
Loss 1.4741798400878907, Accuracy 0.6812499761581421 

You now have gone through the basic ML pipeline and trained a 
model to classify Fashion-MNIST data. 
 
[ ] 

Laying out notebook... 
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Conclusion 

In this book, we provided an introduction to coding with Tensor-
Flow 2.0. We showed how to develop with TensorFlow 1.0 and 
contrasted how the same code can be developed in TensorFlow 2.0. 


